A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of temperature on morphology, physiology, and metabolic profile of diazotrophic cyanobacteria inhabiting diverse habitats. | LitMetric

AI Article Synopsis

  • Global population growth has led to increased food demand, but rising temperatures pose significant challenges for agriculture and food security.
  • The study examines the impact of temperature on two types of cyanobacteria, highlighting that hot-spring cyanobacteria demonstrate greater resilience and adaptive mechanisms compared to rice-field cyanobacteria under temperature stress.
  • Key findings include higher growth, protein, and antioxidant contents in hot-spring cyanobacteria, suggesting their potential role in promoting sustainable agriculture and enhancing food security in a warming climate.

Article Abstract

Global population expansion has increased the demand for food supply and agricultural productivity. Abiotic stressors like temperature have significantly restricted agriculture in cropland and jeopardized food security. Cyanobacteria play a crucial role in fostering sustainable agriculture and ensuring global food security. In the present study, we have assessed the effect of temperatures on diazotrophic free living rice-field and hot-spring cyanobacteria. They were treated to a variable range of temperatures to see the changes in cellular morphology, physiology, and biochemical characteristics. The rise of temperatures induces growth (60 %), total protein (54 %) contents of rice-field cyanobacterium until 25 °C, further treatment results in decline (20 %) at 45 °C. However, growth indices were increased till 35 °C (90 %) in hot-spring cyanobacterium and further treatment did not exhibit a significant decline in the same. However, the reactive oxygen species (ROS) generation and lipid peroxidation (LPO) were higher in rice-field (2.8 and 1.7 fold) as compared to hot-spring cyanobacterium (2.2 and 1.6 fold). In response to temperature, enzymatic antioxidant contents were much higher in hot-spring as compared to rice-field cyanobacterium. Similarly, carotenoid and carbohydrate content was also higher in hot spring (2 fold) as compared to rice-field cyanobacterium (1.5 and 1.2 fold). All these data collectively suggest that hot-spring (Nostoc sp. strain VKB02) has a higher thermoprotective capacity with novel defense mechanisms as compared to rice-field cyanobacterium (Anabaena sp. strain VKB01). These findings contributed to a better understanding of the temperature stress, improvement of agricultural productivity and future welfare of green ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109186DOI Listing

Publication Analysis

Top Keywords

rice-field cyanobacterium
16
compared rice-field
12
morphology physiology
8
agricultural productivity
8
food security
8
hot-spring cyanobacterium
8
fold compared
8
cyanobacterium fold
8
rice-field
6
cyanobacterium
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!