A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Designing Moiré Patterns by Shearing. | LitMetric

Designing Moiré Patterns by Shearing.

ACS Nano

Imdea Nanoscience, Faraday 9, 28015 Madrid, Spain.

Published: October 2024

AI Article Synopsis

  • The study investigates the elastic properties and low-energy physics of a sheared nanoribbon placed on graphene, which results in a changing moiré pattern.
  • Using a classical elastic model, the researchers derive strains in the ribbon and its electronic energy spectrum through a tight-binding model.
  • The findings suggest that this sheared nanoribbon setup is promising for exploring superconductivity and correlated phases in twisted bilayer graphene, particularly in conditions of low twist angle disorder.

Article Abstract

We analyze the elastic properties, structural effects, and low-energy physics of a sheared nanoribbon placed on top of graphene, which creates a gradually changing moiré pattern. By means of a classical elastic model we derive the strains in the ribbon and we obtain its electronic energy spectrum with a scaled tight-binding model. The size of the sheared region is determined by the balance between elastic and van der Waals energy, and different regimes are identified. Near the clamped edge, moderate strains and small twist angles lead to one-dimensional channels. Near the sheared edge, a long region behaves like magic angle twisted bilayer graphene (TBG), showing a sharp peak in the density of states, mostly isolated from the rest of the spectrum. We also calculate the band topology along the ribbon and we find that it is stable for large intervals of strains and twist angles. Together with the experimental observations, these results show that the sheared nanoribbon geometry is ideal for exploring superconductivity and correlated phases in TBG in the very sought-after regime of ultralow twist angle disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c08302DOI Listing

Publication Analysis

Top Keywords

sheared nanoribbon
8
twist angles
8
designing moiré
4
moiré patterns
4
patterns shearing
4
shearing analyze
4
analyze elastic
4
elastic properties
4
properties structural
4
structural effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!