Deciphering the context-specific relationship between sequence and function is a major challenge in genomics. Existing tools for inducing locus-specific hypermutation and evolution in the native genome context are limited. Here we present a programmable platform for long-range, locus-specific hypermutation called helicase-assisted continuous editing (HACE). HACE leverages CRISPR-Cas9 to target a processive helicase-deaminase fusion that incurs mutations across large (>1000-base pair) genomic intervals. We applied HACE to identify mutations in mitogen-activated protein kinase kinase 1 (MEK1) that confer kinase inhibitor resistance, to dissect the impact of individual variants in splicing factor 3B subunit 1 (SF3B1)-dependent missplicing, and to evaluate noncoding variants in a stimulation-dependent immune enhancer of CD69. HACE provides a powerful tool for investigating coding and noncoding variants, uncovering combinatorial sequence-to-function relationships, and evolving new biological functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adn5876 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!