A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. | LitMetric

AI Article Synopsis

  • Stem cell therapies show great potential for treating chronic wounds, but issues like limited lifespan and poor delivery systems complicate their use in clinical settings.
  • This study introduces a new delivery system using a photo-crosslinking collagen hydrogel to effectively transport human adipose-derived stem cells (hADSCs) to wound sites, enhancing diabetic wound healing.
  • The hADSCs encapsulated in the hydrogel maintain their viability and function for up to three weeks, leading to improved healing outcomes in diabetic mouse models by promoting new blood vessel formation and tissue repair.

Article Abstract

Stem cell-based therapies hold significant promise for chronic wound healing and skin appendages regeneration, but challenges such as limited stem cell lifespan and poor biocompatibility of delivery systems hinder clinical application. In this study, an in situ delivery system for human adipose-derived stem cells is developed (hADSCs) to enhance diabetic wound healing. The system utilizes a photo-crosslinking recombinant human type III collagen (rHCIII) hydrogel to encapsulate hADSCs, termed the hADSCs@rHCIII hydrogel. This hydrogel undergoes local crosslinking at the wound site, establishing a sturdy 3D niche suitable for stem cell function. Consequently, the encapsulated hADSCs exhibit strong attachment and spreading within the hydrogels, maintaining their proliferation, metabolic activity, and viability for up to three weeks in vitro. Importantly, in vivo studies demonstrate that the hADSCs@rHCIII hydrogel achieves significant in situ delivery of stem cells, prolonging their retention within the wound. This ultimately enhances their immunomodulatory capabilities, promotes neovascularization and granulation tissue formation, facilitates matrix remodeling, and accelerates healing in a diabetic mouse wound model. Collectively, these findings highlight the potential of the conveniently-prepared and user-friendly hADSCs@rHCIII hydrogel as a promising therapeutic approach for diabetic wound treatment and in situ skin regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202401012DOI Listing

Publication Analysis

Top Keywords

diabetic wound
12
wound healing
12
hadscs@rhciii hydrogel
12
healing skin
8
skin regeneration
8
recombinant human
8
stem cell
8
situ delivery
8
stem cells
8
wound
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!