Mass spectrometry imaging (MSI) is a powerful scientific tool for understanding the spatial distribution of biochemical compounds in tissue structures. In this paper, we introduce three novel approaches in MSI data processing to perform the tasks of data augmentation, feature ranking, and image registration. We use these approaches in conjunction with non-negative matrix factorization (NMF) to resolve two of the biggest challenges in MSI data analysis, namely: 1) the large file sizes and associated computational resource requirements and 2) the complexity of interpreting the very high dimensional raw spectral data. There are many dimensionality reduction techniques that address the first challenge but do not necessarily result in readily interpretable features, leaving the second challenge unaddressed. We demonstrate that NMF is an effective dimensionality reduction algorithm that reduces the size of MSI datasets by three orders of magnitude with limited loss of information, yielding spatial and spectral components with meaningful correlation to tissue structure that may be used directly for subsequent data analysis without the need for additional clustering steps. This analysis is demonstrated on an MSI dataset from female Sprague-Dawley rats for an animal model of comorbid visceral pain hypersensitivity (CPH). We find that high-dimensional MSI data (∼ 100,000 ions per pixel) can be reduced to 20 spectral NMF components with < 20% loss in reconstruction accuracy. The resulting spatial NMF components are reproducible and correlate well with H&E-stained tissue images. These components may also be used to generate images with enhanced specificity for different tissue types. Small patches of NMF data (i.e., 20 spatial NMF components over 20 × 20 pixels) provide an accuracy of ∼ 87% in classifying CPH vs naïve control subjects. This paper presents the novel data processing methodologies that were used to produce these results, encompassing novel data processing pipelines for data augmentation to support training for classification, ranking of features according to their contribution to classification, and image registration to enhance tissue-specific imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466421PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300526PLOS

Publication Analysis

Top Keywords

dimensionality reduction
12
msi data
12
data processing
12
nmf components
12
data
11
mass spectrometry
8
spectrometry imaging
8
visceral pain
8
non-negative matrix
8
matrix factorization
8

Similar Publications

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Automatic Sign Language Recognition Systems (ASLR) offers smooth communication between hearing-impaired and normal-hearing individuals, enhancing educational opportunities for impaired. However, it struggles with "curse of dimensionality" due to excessive features resulting in prolonged training time and exhaustive computational demand. This paper proposes technique that integrates machine learning and swarm intelligence to effectively address this issue.

View Article and Find Full Text PDF

Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.

View Article and Find Full Text PDF

Background: Upper limb fractures significantly alter movement, impacting function and recovery. Three-dimensional motion analysis allows precise assessment of these changes.

Methods: Sixty patients were divided into four groups: shoulder, elbow, wrist fractures, and controls.

View Article and Find Full Text PDF

Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!