Previous deep learning-based event denoising methods mostly suffer from poor interpretability and difficulty in real-time processing due to their complex architecture designs. In this paper, we propose window-based event denoising, which simultaneously deals with a stack of events while existing element-based denoising focuses on one event each time. Besides, we give the theoretical analysis based on probability distributions in both temporal and spatial domains to improve interpretability. In temporal domain, we use timestamp deviations between processing events and central event to judge the temporal correlation and filter out temporal-irrelevant events. In spatial domain, we choose maximum a posteriori (MAP) to discriminate real-world event and noise and use the learned convolutional sparse coding to optimize the objective function. Based on the theoretical analysis, we build Temporal Window (TW) module and Soft Spatial Feature Embedding (SSFE) module to process temporal and spatial information separately, and construct a novel multi-scale window-based event denoising network, named WedNet. The high denoising accuracy and fast running speed of our WedNet enables us to achieve real-time denoising in complex scenes. Extensive experimental results verify the effectiveness and robustness of our WedNet. Our algorithm can remove event noise effectively and efficiently and improve the performance of downstream tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3467709DOI Listing

Publication Analysis

Top Keywords

event denoising
16
window-based event
12
event
8
theoretical analysis
8
temporal spatial
8
event noise
8
denoising
7
temporal
5
fast window-based
4
denoising spatiotemporal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!