The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494300 | PMC |
http://dx.doi.org/10.1073/pnas.2414768121 | DOI Listing |
Nucleic Acids Res
December 2024
Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
West Nile virus (WNV) requires programmed -1 ribosomal frameshifting for translation of the viral genome. The efficiency of WNV frameshifting is among the highest known. However, it remains unclear why WNV exhibits such a high frameshifting efficiency.
View Article and Find Full Text PDFNew Phytol
December 2024
College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
Protein isoforms (PIs) play pivotal roles in regulating plant growth and development that confer adaptability to diverse environmental conditions. PIs are widely present in plants and generated through alternative splicing (AS), alternative polyadenylation (APA), alternative initiation (AI), and ribosomal frameshifting (RF) events. The widespread presence of PIs not only significantly increases the complexity of genomic information but also greatly enriches regulatory networks and enhances their flexibility.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, the Netherlands.
Messenger RNA (mRNA) translation is a tightly controlled process frequently deregulated in cancer. Key to this deregulation are transfer RNAs (tRNAs), whose expression, processing and post-transcriptional modifications are often altered in cancer to support cellular transformation. In conditions of limiting levels of amino acids, this deregulated control of protein synthesis leads to aberrant protein production in the form of ribosomal frameshifting or misincorporation of non-cognate amino acids.
View Article and Find Full Text PDFChem Sci
November 2024
Department of Chemistry, University of Rochester Rochester NY 14627 USA.
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
Recent advances in fluorescence microscopy have now made it possible to measure the translation dynamics of individual RNA in living cells and in multiple colors. Here we describe a protocol that exploits these recent advances to simultaneously image the translation of two open reading frames encoded on a single reporter RNA yet frameshifted with respect to each other. This enables precise measurements of frameshifting dynamics and efficiency from specific frameshift stimulatory sequences, all with single-RNA precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!