Motivation: Post-translational modifications (PTMs) increase the diversity of the proteome and are vital to organismal life and therapeutic strategies. Deep learning has been used to predict PTM locations. Still, limitations in datasets and their analyses compromise success.

Results: We evaluated the use of known PTM sites in prediction via sequence-based deep learning algorithms. For each PTM, known locations of that PTM were encoded as a separate amino acid before sequences were encoded via word embedding and passed into a convolutional neural network that predicts the probability of that PTM at a given site. Without labeling known PTMs, our models are on par with others. With labeling, however, we improved significantly upon extant models. Moreover, knowing PTM locations can increase the predictability of a different PTM. Our findings highlight the importance of PTMs for the installation of additional PTMs. We anticipate that including known PTM locations will enhance the performance of other proteomic machine learning algorithms.

Availability And Implementation: Sitetack is available as a web tool at https://sitetack.net; the source code, representative datasets, instructions for local use, and select models are available at https://github.com/clair-gutierrez/sitetack.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552626PMC
http://dx.doi.org/10.1093/bioinformatics/btae602DOI Listing

Publication Analysis

Top Keywords

ptm locations
16
deep learning
12
ptm
9
ptms
5
sitetack deep
4
learning
4
learning model
4
model improves
4
improves ptm
4
ptm prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!