This study identifies factors influencing spatial and temporal variations in magnetic susceptibility and heavy metal content in soils and airborne particulate matter within the Kyiv megapolis, Ukraine, and highlights how source apportionment differs in the long and short run. Topsoil magnetic susceptibility anomalies of > 70 × 10 mkg are observed around old factories. The tree bark magnetic susceptibility map provides a record of industry general low emissions for the last 2-3 decades. The patterns of both spatial distributions confirm that factory emissions dominate the composition of particulate falling on the ground in urban area, with exclusion of streets with heavy traffic. Enhanced concentrations of Cu, Ni, and Zn have been found in urban soils, showing a positive correlation with magnetic susceptibility. Re-suspended road dust dominates temporal variation of particulate matter magnetic susceptibility collected on air filters. The air at busy streets is cleaner in winter, when the street dust gets immobilized by snow cover or freezing. Industries in Kyiv pose no significant effect on air quality; the concentrations of Cr, Ni, Cu, Zn, Cd, and Pb are at normal urban level with the exception of the near vicinity to factories. Air in streets with heavy traffic is enriched with Fe and Mn. Principal component analysis reveals different pattern of air pollution for the busy streets and yard areas. Yards are less affected by road dust; thus, contribution of industrial emissions can be distinguished. The results provide context for further quantification of any alterations in ecological state of Kyiv megapolis that may have arisen from socio-economic shocks and direct threats connected to the current war.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467103PMC
http://dx.doi.org/10.1007/s10661-024-13194-wDOI Listing

Publication Analysis

Top Keywords

magnetic susceptibility
20
air filters
8
particulate matter
8
kyiv megapolis
8
streets heavy
8
heavy traffic
8
road dust
8
busy streets
8
magnetic
6
air
6

Similar Publications

Susceptibility map-weighted MRI can distinguish tremor-dominant Parkinson's disease from essential tremor.

Sci Rep

January 2025

Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Distinguishing between Parkinson's disease (PD) and essential tremor (ET) can be challenging sometimes. Although positron emission tomography can confirm PD diagnosis, its application is limited by high cost and exposure to radioactive isotopes. Patients with PD exhibit loss of the dorsal nigral hyperintensity on brain magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Convolutional Neural Networks for the segmentation of hippocampal structures in postmortem MRI scans.

J Neurosci Methods

January 2025

Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:

Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.

View Article and Find Full Text PDF

Magnetically Induced Current-Density Susceptibility of Circum[]coronenes.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki FIN-00014, Finland.

We have calculated the magnetically induced current density (MICD) susceptibility at the all-electron density functional theory level for a series of coronoid molecules of increasing size and compared the MICD susceptibilities with those calculated using the pseudo-π (PP) model. The molecules sustain global diatropic magnetically induced ring currents (MIRCs), whereas paratropic MICD vortices mainly appear inside the benzene rings. The computationally cheaper PP calculations were also employed on circum[]coronene molecules showing that the MICD pattern continues to alternate for odd and even when increasing the size of the molecule.

View Article and Find Full Text PDF

Development of an FKBP12-recruiting chemical-induced proximity DNA-encoded library and its application to discover an autophagy potentiator.

Cell Chem Biol

December 2024

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:

Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library.

View Article and Find Full Text PDF

Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!