Novel motif associated with carbon catabolite repression in two major Gram-positive pathogen virulence regulatory proteins.

Microbiol Spectr

Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA.

Published: November 2024

Carbon catabolite repression (CCR) is a widely conserved regulatory process that ensures enzymes and transporters of less-preferred carbohydrates are transcriptionally repressed in the presence of a preferred carbohydrate. This phenomenon can be regulated via a CcpA-dependent or CcpA-independent mechanism. The CcpA-independent mechanism typically requires a transcriptional regulator harboring a phosphotransferase regulatory domain (PRD) that interacts with phosphoransferase ystem (PTS) components. PRDs contain a conserved histidine residue that is phosphorylated by the PTS-associated HPr-His15~P protein. PRD-containing regulators often harbor additional domains that resemble PTS-associated EIIB protein domains with a conserved cysteine residue that can be phosphorylated by cognate PTS components. We noted that Mga, the PRD-containing central virulence regulator of , has an EIIB domain containing a cysteine that, based on the presence of a similar motif in glycerol kinase, could be a target for phosphorylation. Using site-directed mutagenesis, we constructed phospho-ablative and phospho-mimetic substitutions of this cysteine and found that these substitutions modify the CCR of the Rgg2/3 quorum-sensing system. Moreover, we provide genetic evidence that the phospho-donor of this cysteine residue is likely to be ManL, the EIIA/B subunit of the mannose PTS system. Interestingly, a structurally distinct virulence gene regulator, PrfA of , harbors a similar cysteine-containing motif, and phospho-ablative and phospho-mimetic substitutions of the cysteine-altered CCR of PrfA-dependent virulence gene expression. Collectively, our data suggest that phosphorylation of a cysteine within the shared novel motif in Mga and PrfA may be a heretofore missing link between cellular metabolism and virulence.IMPORTANCEIn this study, we identified a novel cysteine-containing motif within the amino acid sequence of two structurally distinct transcriptional regulators of virulence in two Gram-positive pathogens that appears to link carbon metabolism with virulence gene expression. The results also highlight the potential post-translational modification of cysteine in bacterial species, a rare and understudied modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537053PMC
http://dx.doi.org/10.1128/spectrum.00485-24DOI Listing

Publication Analysis

Top Keywords

virulence gene
12
novel motif
8
carbon catabolite
8
catabolite repression
8
ccpa-independent mechanism
8
pts components
8
residue phosphorylated
8
cysteine residue
8
phospho-ablative phospho-mimetic
8
phospho-mimetic substitutions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!