A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic Insights of Amino Acid Binding to Hydroxyapatite: Molecular Dynamics Charts Future Directions in Biomaterial Design. | LitMetric

Extensive efforts have been made to improve the understanding of hard tissue regeneration, essential for advancing medical applications like bone graft materials. However, the mechanisms of bone biomineralization, particularly the regulation of hydroxyapatite growth by proteins/peptides, remain debated. Small biomolecules such as amino acids are ideal for studying these mechanisms due to their simplicity and relevance as protein/peptide building blocks. This study investigates the binding affinity of four amino acids including glycine (Gly), proline (Pro), lysine (Lys), and aspartic acid (Asp) to the hydroxyapatite (HAP) (100) surface through molecular dynamics simulations. Our findings reveal that aspartic acid exhibits the most energetically favorable binding affinity, attributed to its additional carboxylate group (-COO), which facilitates stronger interactions with Ca ions on the HAP surface compared to other amino acids with single carboxylate groups. This highlights the critical role of specific functional groups in modulating binding strength, emphasizing that the presence of multiple binding sites in amino acids enhances binding stability. Interestingly, the study also uncovers the significance of water-mediated interactions, as the compact water layer above the HAP surface acts as a barrier, complicating direct binding and underscoring the need to consider solvation effects in simulations. Glycine, due to its small size, demonstrates a unique ability to penetrate this tightly bound water monolayer, suggesting that molecular size influences binding dynamics. These simulations offer detailed insights into the atomic-level interactions, providing a deeper understanding of binding affinity and stability. These insights are pertinent for designing peptides or proteins with enhanced interactions with biomaterials, particularly in mimicking natural bone-binding processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02537DOI Listing

Publication Analysis

Top Keywords

amino acids
16
binding affinity
12
binding
9
molecular dynamics
8
aspartic acid
8
dynamics simulations
8
hap surface
8
amino
5
mechanistic insights
4
insights amino
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!