A central paradigm of polymer physics states that chains in melts behave like random walks as intra- and interchain interactions effectively cancel each other out. Likewise, θ-chains, i.e., chains at the transition from a swollen coil to a globular phase, are also thought to behave like ideal chains, as attractive forces are counterbalanced by repulsive entropic contributions. While the simple mapping to an equivalent Kuhn chain works rather well in most scenarios with corrections to scaling, random walks do not accurately capture the topology and knots, particularly for flexible chains. In this paper, we demonstrate with Monte Carlo and molecular dynamics simulations that chains in polymer melts and θ-chains not only agree on a structural level for a range of stiffnesses but also topologically. They exhibit similar knotting probabilities and knot sizes, both of which are not captured by ideal chain representations. This discrepancy comes from the suppression of small knots in real chains, which is strongest for very flexible chains because excluded volume effects are still active locally and become weaker with increasing semiflexibility. Our findings suggest that corrections to ideal behavior are indeed similar for the two scenarios of real chains and that the structure and topology of a chain in a melt can be approximately reproduced by a corresponding θ-chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0228826 | DOI Listing |
Sci Rep
December 2024
Clermont Auvergne University, CNRS, IRD, OPGC, Magmas and Volcanoes Laboratory, 63000, Clermont-Ferrand, France.
The new submarine volcano Fani Maoré offshore Mayotte (Comoros archipelago) discovered in 2019 has raised the awareness of a possible future eruption in Petite-Terre island, located on the same 60 km-long volcanic chain. In this context of a renewal of the volcanic activity, we present here the first volcanic hazard assessment in Mayotte, focusing on the potential reactivation of the Petite-Terre eruptive centers. Using the 2-D tephra dispersal model HAZMAP and the 1979 - 2021 meteorological ERA-5 database, we first identify single eruptive scenarios of various impacts for the population of Mayotte.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong University of Science and Technology, College of Transportation, Qingdao, 266590, China.
The optimization of auto parts supply chain logistics plays a decisive role in the development of the automotive industry. To reduce logistics costs and improve transportation efficiency, this paper addresses the joint optimization problem of multi-vehicle pickup and delivery transportation paths under time window constraints, coupled with the three-dimensional loading of goods. The model considers mixed time windows, three-dimensional loading constraints, cyclic pickup and delivery paths, varying vehicle loads and volumes, flow balance, and time window constraints.
View Article and Find Full Text PDFSci Rep
December 2024
Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, 11944, USA.
For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Pathogenic activating mutations in the fibroblast growth factor receptor 3 (FGFR3) drive disease maintenance and progression in urothelial cancer. 10-15% of muscle-invasive and metastatic urothelial cancer (MIBC/mUC) are FGFR3-mutant. Selective targeting of FGFR3 hotspot mutations with tyrosine kinase inhibitors (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!