Objective: After severe corticospinal tract damage poststroke in humans, some recovery of strength and movement proximally is evident. It is possible that alternate motor pathways, such as the reticulospinal tract, may be upregulated to compensate for the loss of corticospinal tract input. We investigated the extent of reticulospinal tract excitability modulation and its inter-dependence on the severity of corticospinal tract damage after stroke in humans.

Methods: We used a novel startle conditioned transcranial magnetic stimulation paradigm to elicit ipsilateral motor evoked potentials, an index of reticulospinal tract excitability, in 22 chronic stroke participants with mild to severe corticospinal tract damage and 14 neurotypical age-matched controls.

Results: We found that ipsilateral motor evoked potential presence was higher in the paretic arm of people with severe corticospinal tract damage compared to their non-paretic arm, people with mild corticospinal tract damage, and age-matched controls. Interestingly, ipsilateral motor evoked potential presence was correlated with motor impairment across the entire stroke cohort, whereby individuals with worse impairment exhibited more frequent ipsilateral motor evoked potentials (ie, higher reticulospinal tract excitability).

Interpretation: Following severe corticospinal tract damage, upregulated reticulospinal tract activity may compensate for a loss of corticospinal tract input, providing some proximal recovery of isolated and within-synergy movements, but deficits in performing out of synergy movements and finger fractionation remain. Interventions aimed at modulating the reticulospinal tract could be beneficial or detrimental to ameliorating motor impairment depending on the degree of reliance on this pathway for residual motor output. ANN NEUROL 2024.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.27103DOI Listing

Publication Analysis

Top Keywords

corticospinal tract
32
tract damage
24
reticulospinal tract
24
severe corticospinal
20
ipsilateral motor
16
motor evoked
16
tract
14
corticospinal
9
chronic stroke
8
motor
8

Similar Publications

Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.

Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.

View Article and Find Full Text PDF

Alterations in white matter microstructure in bipolar disorder patients with and without psychosis.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China. Electronic address:

Objective: The overlap of affective disturbance and psychosis considerably makes it complex to determine the etiology of bipolar disorder (BD) and develop targeted interventions. The present study aimed to determine the white matter microstructural alterations that distinguish between BD with psychosis (BDP) and BD with no psychosis (BDNP) to identify patients who may specifically benefit from appropriately effective treatments.

Methods: Diffusion-weighted magnetic resonance images were acquired from 38 participants with BDP, 52 participants with BDNP and 70 healthy controls (HCs).

View Article and Find Full Text PDF

Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time.

Brain Stimul

December 2024

Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Background: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed.

View Article and Find Full Text PDF

Automated White Matter Fiber Tract Segmentation for the Brainstem.

NMR Biomed

February 2025

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.

This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas.

View Article and Find Full Text PDF

The corticospinal tract (CST) facilitates skilled, precise movements, which necessitates that subcerebral projection neurons (SCPN) establish segmentally specific connectivity with brainstem and spinal circuits. Developmental molecular delineation enables prospective identification of corticospinal neurons (CSN) projecting to thoraco-lumbar spinal segments; however, it remains unclear whether other SCPN subpopulations in developing sensorimotor cortex can be prospectively identified in this manner. Such molecular tools could enable investigations of SCPN circuitry with precision and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!