Investigation of perovskite materials for solar cells using scanning tunneling microscopy.

Phys Chem Chem Phys

Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.

Published: October 2024

AI Article Synopsis

  • * Perovskite solar cells are gaining attention for their lower costs and high efficiency, but their commercialization faces challenges due to instability of the materials.
  • * Scanning tunneling microscopy/spectroscopy (STM/STS) provides important insights into the atomic properties of perovskite materials, which can help overcome stability issues and enhance solar cell design.

Article Abstract

The issue of energy scarcity has become more prominent due to the recent scientific and technological advancements. Consequently, there is an urgent need for research on sustainable and renewable resources. Solar energy, in particular, has emerged as a highly promising option because of its pollution-free and environment-friendly characteristics. Among the various solar energy technologies, perovskite solar cells have attracted much attention due to their lower cost and higher photoelectric conversion efficiency (PCE). However, the inherent instability of perovskite materials hinders the commercialization of such devices. The utilization of scanning tunneling microscopy/spectroscopy (STM/STS) can provide valuable insights into the fundamental properties of different perovskite materials at the atomic scale, which is crucial for addressing this challenge. In this review, we present the recent research progress of STM/STS analysis applied to various perovskites for solar cells, including halide perovskites, two-dimensional Ruddlesden-Popper perovskites, and oxide perovskites. This comprehensive overview aims to inspire new ideas and strategies for optimizing solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp02010cDOI Listing

Publication Analysis

Top Keywords

solar cells
16
perovskite materials
12
scanning tunneling
8
solar energy
8
solar
6
investigation perovskite
4
materials solar
4
cells
4
cells scanning
4
tunneling microscopy
4

Similar Publications

Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.

View Article and Find Full Text PDF

Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.

View Article and Find Full Text PDF

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

Why SbSe/CdS Interface Produces Higher Power Conversion Efficiency.

J Phys Chem Lett

January 2025

College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!