The hearts of salmonids display remarkable plasticity, adapting to various environmental factors that influence cardiac function and demand. For instance, in response to cold temperature, the salmonid heart undergoes growth and remodeling to counterbalance the reduced contractile function associated with dropping temperatures. Alongside heart size, the distinct pyramidal shape of the wild salmonid heart is essential for optimal cardiac performance, yet the environmental drivers behind this optimal cardiac morphology remain to be fully understood. Intriguingly, farmed salmonids often have rounded, asymmetrical ventricles and misaligned bulbi from an early age. These deformities are noteworthy given that farmed salmon are often not exposed to natural cues, such as a gradual temperature increase and changing day lengths, during critical developmental stages. In this study, we investigated whether natural environmental conditions during early life stages are pivotal for proper cardiac morphology. Atlantic salmon were raised under simulated natural conditions (low temperature with a natural photoperiod; SimNat) and compared with those reared under simulated farming conditions (SimFarm). Our findings reveal that the ventricle shape and bulbus alignment in SimNat fish closely resemble those of wild salmon, while functional analyses indicate significant differences between SimNat and SimFarm hearts, suggesting diastolic dysfunction and higher cardiac workload in SimFarm hearts. These findings highlight the profound influence of environmental factors such as water temperature and photoperiod on the structural development of the salmonid heart, underscoring the importance of early environmental conditions for cardiac health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529873PMC
http://dx.doi.org/10.1242/jeb.247557DOI Listing

Publication Analysis

Top Keywords

salmonid heart
12
atlantic salmon
8
environmental factors
8
optimal cardiac
8
cardiac morphology
8
environmental conditions
8
simfarm hearts
8
cardiac
7
environmental
6
environmental signals
4

Similar Publications

Comparison of transcriptome responses in blood cells of Atlantic salmon infected by three genotypes of Piscine orthoreovirus.

Fish Shellfish Immunol

December 2024

Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway. Electronic address:

Piscine orthoreovirus (PRV) infection is common in aquaculture of salmonids. The three known PRV genotypes (PRV-1-3) have host species specificity and cause different diseases, but all infect and replicate in red blood cells (RBCs) in early infection phase. PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon (Oncorhynchus kisutch), while PRV-3 induces HSMI-like disease in farmed rainbow trout (Oncorhynchus mykiss).

View Article and Find Full Text PDF

The hearts of salmonids display remarkable plasticity, adapting to various environmental factors that influence cardiac function and demand. For instance, in response to cold temperature, the salmonid heart undergoes growth and remodeling to counterbalance the reduced contractile function associated with dropping temperatures. Alongside heart size, the distinct pyramidal shape of the wild salmonid heart is essential for optimal cardiac performance, yet the environmental drivers behind this optimal cardiac morphology remain to be fully understood.

View Article and Find Full Text PDF

Environmental stressors such as micro- and nanosized plastic particles (MNPs) or crude oil have a detrimental effect on aquatic animals; however, the impact upon the cardiovascular system of fish remains relatively under-researched. This study presents a novel approach for investigating the effect of crude oil and MNPs on the cardiac system of fish. We used salmonid larvae and cardiac cell cultures derived from hearts of salmonid fish and exposed them to environmental stressors.

View Article and Find Full Text PDF

The smoltification of farmed Atlantic salmon is commonly associated with mild immunosuppression. However, B cells may deviate from this trend, showing increased proliferation and migration during this period. This study assessed the effects of smoltification and adaptation to seawater in a controlled experiment.

View Article and Find Full Text PDF

The Arctic is warming three times faster than the global average, imposing challenges to cold-adapted fish, such as Arctic char (Salvelinus alpinus). We evaluated stress and metabolic responses of Arctic char to different thermal acclimation scenarios to determine whether responses to thermal variation differed from those to stable exposures. Fish were exposed for 7 days to one of four treatments: (1) control (12°C); (2) mean (16°C), corresponding to the mean temperature of the diel thermal cycle; (3) constant high temperature (20°C); and (4) diel thermal cycling (12 to 20°C every 24 h).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!