Introduction: Mesenchymal stem/stromal cells (MSCs)-based products have unique characteristics compared to other drugs because of their inherently variable effects depending on culture conditions and microenvironment. In some cases, cells can be produced individually, one batch at a time, for personalized therapy. Therefore, it is very important to optimize both culture conditions and medium composition under Good Manufacturing Practice (GMP) standards. MSCs properties have been exploited as potential cell therapies in regenerative medicine. The main mechanism of their protective and regenerative effect is based on their secretory activity. Simultaneously, their secretome is highly variable and sensitive to any change in environmental conditions. Depending on the type of damage and the target application, it is desirable to enhance the secretion of therapeutic factors. Changes in the modulation of environmental conditions can affect survival, migration ability, and both proliferative and clonogenic potentials.
Materials And Methods: This study cultured Wharton's jelly-derived MSCs (WJ-MSCs) in media with varying concentrations of human platelet lysate (hPL). Two groups were created: one with low hPL concentration and another with a high hPL concentration. The effects of these different hPL concentrations were analyzed by assessing mesenchymal phenotype retention, secretory activity, clonogenic potential, proliferation, and migration capabilities. Additionally, the secretion levels of key therapeutic factors, such as Hepatocyte Growth Factor (HGF), Brain-Derived Neurotrophic Factor (BDNF), and Chemokine Ligand 2 (CCL-2), were measured.
Results: WJ-MSCs maintained their mesenchymal phenotype regardless of hPL concentration. However, a higher concentration of hPL promoted cell clonogenic potential, proliferation, migration, and increased secretion of therapeutic factors.
Conclusion: Adjusting the hPL concentration in the culture medium modulates the response of WJ MSCs and enhances their therapeutic potential. Higher hPL concentration promotes increased secretory activity and improves the regenerative capacity of WJ-MSCs, suggesting a promising strategy to optimize MSC-based therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463174 | PMC |
http://dx.doi.org/10.2147/SCCAA.S471118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!