A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the nutrient removal performance from rice-crayfish paddy fields by an ecological ditch-wetland system. | LitMetric

AI Article Synopsis

  • - Agricultural drainage from fields can hurt aquatic ecosystems due to high levels of nitrogen and phosphorus in runoff.
  • - A study explored how well an ecological ditch-wetland system (EDWS) removes these nutrients from water, finding that ecological ditches are more effective than wetlands, especially during certain growth stages of rice.
  • - The research highlighted that factors like water discharge rate and total suspended solids significantly impact nutrient removal efficiency, suggesting that EDWS could be a sustainable method for managing agricultural runoff.

Article Abstract

Agricultural drainage from catchments significantly impacts aquatic ecosystems due to high nitrogen and phosphorus concentrations in runoff. While original ecological ditches and wetlands have demonstrated effectiveness in nutrient load removal, the overall impact of an ecological ditch-wetland system (EDWS) on agricultural nutrient removal has received limited attention. This study conducted a field experiment to investigate the physicochemical conditions and nutrient removal efficiency of an EDWS for purifying nutrient discharge from rice-crayfish paddy fields. Variations in water temperature (WT), dissolved oxygen (DO), pH, and total suspended solids (TSS) within the EDWS were assessed. Nutrient concentrations-including total nitrogen (TN), ammonium nitrogen (NH-N), nitrate nitrogen (NO-N), total phosphorus (TP), and soluble reactive phosphorus (SRP)-were monitored from the tillering to the ripening stage of the rice growth cycle. The evaluation of nutrient removal efficiencies in the EDWS revealed that ecological ditches exhibited higher removal efficiencies compared to wetlands. The average total removal efficiencies for TN, NH-N, NO-N, TP, and SRP were 37.50 %, 39.38 %, 38.62 %, 37.94 %, and 39.51 %, respectively, with peak removal efficiencies observed at specific growth stages of the rice crop. Furthermore, the study explored the influence of hydraulic retention time on nutrient removal efficiency in the EDWS, indicating higher nutrient discharge removal efficiencies under low water discharge rates. Linear regression analysis identified water discharge, influent nutrient loads, and TSS as significant factors affecting nutrient removal efficiency in the EDWS. This study provides valuable insights into the effectiveness of EDWS in purifying nutrient discharge from rice-crayfish paddy fields, highlighting their potential as sustainable solutions for nutrient management in agricultural landscapes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462010PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e38373DOI Listing

Publication Analysis

Top Keywords

nutrient removal
24
removal efficiencies
20
rice-crayfish paddy
12
paddy fields
12
nutrient
12
removal efficiency
12
efficiency edws
12
nutrient discharge
12
removal
11
ecological ditch-wetland
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!