Salinity negatively impacts soil fertility by impairing the development and physiological functions of foxtail millet plants. Organic amendments have emerged as a viable solution in the reclamation and management of salinity inflicted soils and improve the performance of crop. In this regard, a pot experiment was carried out to examine the effect of organic amendments (OAs) on soil quality and its influence on the growth and physiology of foxtail millet under saline and non-saline condition. The findings indicated that under salt stress conditions, the levels of proline, hydrogen peroxide (HO), and electrolyte leakage (EL) risen, whilst other physiological parameters decrease in foxtail millet. However, the addition of OAs, particularly dhaincha and biochar (BC), has shown a promising salt tolerant amendment among others. Its addition improved the growth performance of salinity-stressed plants, including plant height, fresh and dry biomass, simultaneously decreased sodium ion (Na) and improved calcium (Ca), potassium (K), and nitrate ion (NO ). They also increased proline build up by 6-17 %, reduced HO (19-38 %) and malondialdehyde (16-18 %). Furthermore, they elevated the relative water content (RWC) (25 %), chlorophyll content, and reduced EL (29-50 %). Once more, dhaincha and BC enhanced the number of rhizobia, phosphorus-solubilizing bacteria (PSB) and overall bacterial population in the soil. In saline soil, daincha and BC could enhance soil organic matter (628 %), total nitrogen (1630 %), available phosphorus (32-38 %), and exchangeable potassium (54-73 %). A potential strategy for improving performance under salt is suggested to be the following order, dhaincha > biochar > vermicompost > duckweed. The study would assist stakeholders in these salinity-prone areas in strategizing the use of OAs to their fallow land for cultivation and agricultural activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462332PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e38159DOI Listing

Publication Analysis

Top Keywords

organic amendments
12
foxtail millet
12
soil quality
8
soil
6
role organic
4
amendments improving
4
improving morphophysiology
4
morphophysiology soil
4
quality salinity
4
salinity salinity
4

Similar Publications

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Introduction: The salinization of coastal soils is a primary cause of global land degradation. The aim of this study was to evaluate the effect of organic amendment on the soil microbial community within a saline gradient.

Methods: The study was designed with five levels of electrical conductivity (EC): 0.

View Article and Find Full Text PDF

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!