Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid and comprehensive analysis of complex proteomes across large sample sets is vital for unlocking the potential of systems biology. We present UFP-MS, an ultra-fast mass spectrometry (MS) proteomics method that integrates narrow-window data-independent acquisition (nDIA) with short-gradient micro-flow chromatography, enabling profiling of >240 samples per day. This optimized MS approach identifies 6,201 and 7,466 human proteins with 1- and 2-min gradients, respectively. Our streamlined sample preparation workflow features high-throughput homogenization, adaptive focused acoustics (AFA)-assisted proteolysis, and Evotip-accelerated desalting, allowing for the processing of up to 96 tissue samples in 5 h. As a practical application, we analyzed 507 samples from 13 mouse tissues treated with the enzyme-drug L-asparaginase (ASNase) or its glutaminase-free Q59L mutant, generating a quantitative profile of 11,472 proteins following drug treatment. The MS results confirmed the impact of ASNase on amino acid metabolism in solid tissues. Further analysis revealed broad suppression of anticoagulants and cholesterol metabolism and uncovered numerous tissue-specific dysregulated pathways. In summary, the UFP-MS method greatly accelerates the generation of biological insights and clinically actionable hypotheses into tissue-specific vulnerabilities targeted by ASNase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463356 | PMC |
http://dx.doi.org/10.1101/2024.09.25.615060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!