Cellular heterogeneity of human adipose tissue, is linked to the pathophysiology of obesity and may impact the response to energy restriction and changes in fat mass. Here, we provide an optimized pipeline to estimate cellular composition in human abdominal subcutaneous adipose tissue (ASAT) from publicly available bulk RNA-Seq using signature profiles from our previously published full-length single nuclei (sn)RNA-Seq of the same depot. Individuals with obesity had greater proportions of macrophages and lower proportions of adipocyte sub-populations and vascular cells compared with lean individuals. Two months of diet-induced weight loss (DIWL) increased the estimated proportions of macrophages; however, two years of DIWL reduced the estimated proportions of macrophages, thereby suggesting a bi-phasic nature of cellular remodeling of ASAT during weight loss. Our optimized high-throughput pipeline facilitates the assessment of composition changes of highly characterized cell types in large numbers of ASAT samples using low-cost bulk RNA-Seq. Our data reveal novel changes in cellular heterogeneity and its association with cardiometabolic health in humans with obesity and following weight loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463495PMC
http://dx.doi.org/10.1101/2024.09.23.614489DOI Listing

Publication Analysis

Top Keywords

weight loss
16
bulk rna-seq
12
adipose tissue
12
proportions macrophages
12
optimized pipeline
8
obesity weight
8
composition human
8
human adipose
8
cellular heterogeneity
8
estimated proportions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!