The genetic basis of resistance to quinine (QN), a drug used to treat severe malaria, has long been enigmatic. To gain further insight, we used FRG-NOD human liver-chimeric mice to conduct a genetic cross between QN-sensitive and QN-resistant parasites, which also differ in their susceptibility to chloroquine (CQ). By applying different selective conditions to progeny pools prior to cloning, we recovered 120 unique recombinant progeny. These progeny were subjected to drug profiling and QTL analyses with QN, CQ, and monodesethyl-CQ (md-CQ, the active metabolite of CQ), which revealed predominant peaks on chromosomes 7 and 12, consistent with a multifactorial mechanism of resistance. A shared chromosome 12 region mapped to resistance to all three antimalarials and was preferentially co-inherited with . We identified an ATP-dependent zinc metalloprotease (FtsH1) as one of the top candidates and observed using CRISPR/Cas9 SNP-edited lines that is a potential mediator of QN resistance and a modulator of md-CQ resistance. As expected, CQ and md-CQ resistance mapped to a chromosome 7 region harboring . However, for QN, high-grade resistance mapped to a chromosome 7 peak centered 295kb downstream of . We identified the drug/metabolite transporter 1 (DMT1) as the top candidate due to its structural similarity to PfCRT and proximity to the peak. Deleting DMT1 in QN-resistant Cam3.II parasites significantly sensitized the parasite to QN but not to the other drugs tested, suggesting that DMT1 mediates QN response specifically. We localized DMT1 to structures associated with vesicular trafficking, as well as the parasitophorous vacuolar membrane, lipid bodies, and the digestive vacuole. We also observed that mutant DMT1 transports more QN than the wild-type isoform . Our study demonstrates that DMT1 is a novel marker of QN resistance and a new chromosome 12 locus associates with CQ and QN response, with is a potential candidate, suggesting these genes should be genotyped in surveillance and clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463348 | PMC |
http://dx.doi.org/10.1101/2024.09.27.615529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!