(Mtb) is the causative agent of tuberculosis disease, the greatest source of global mortality by a bacterial pathogen. Mtb adapts and responds to diverse stresses such as antibiotics by inducing transcriptional stress-response regulatory programs. Understanding how and when these mycobacterial regulatory programs are activated could enable novel treatment strategies for potentiating the efficacy of new and existing drugs. Here we sought to define and analyze Mtb regulatory programs that modulate bacterial fitness. We assembled a large Mtb RNA expression compendium and applied these to infer a comprehensive Mtb transcriptional regulatory network and compute condition-specific transcription factor activity profiles. We utilized transcriptomic and functional genomics data to train an interpretable machine learning model that can predict Mtb fitness from transcription factor activity profiles. We demonstrated that this transcription factor activity-based model can successfully predict Mtb growth arrest and growth resumption under hypoxia and reaeration using only RNA-seq expression data as a starting point. These integrative network modeling and machine learning analyses thus enable the prediction of mycobacterial fitness under different environmental and genetic contexts. We envision these models can potentially inform the future design of prognostic assays and therapeutic intervention that can cripple Mtb growth and survival to cure tuberculosis disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463588 | PMC |
http://dx.doi.org/10.1101/2024.09.23.614645 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.
Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.
View Article and Find Full Text PDFJ Clin Exp Neuropsychol
January 2025
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Introduction: Diagnostic evaluations for attention-deficit/hyperactivity disorder (ADHD) are becoming increasingly complicated by the number of adults who fabricate or exaggerate symptoms. Novel methods are needed to improve the assessment process required to detect these noncredible symptoms. The present study investigated whether unsupervised machine learning (ML) could serve as one such method, and detect noncredible symptom reporting in adults undergoing ADHD evaluations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!