Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionk46s4nnti2smqjthjf42o10peqmrs2sh): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Coronaviruses (CoVs) encode nonstructural proteins (nsps) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease (ExoN) in nsp14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14 ExoN is enhanced in the presence of the cofactor nsp10. We introduced alanine substitutions in nsp14 of murine hepatitis virus (MHV) at the nsp14-10 interface and recovered mutant viruses with a range of impairments in replication and biochemical exonuclease activity. Two of these substitutions, nsp14 K7A and D8A, had impairments intermediate between WT-MHV nsp14 and the known ExoN(-) D89A/E91A nsp14 catalytic inactivation mutant. All introduced nsp14-10 interface alanine substitutions impaired exonuclease activity. Passage of the K7A and D8A mutant viruses selected second-site non-synonymous mutations in nsp14 associated with improved mutant virus replication and exonuclease activity. These results confirm the essential role of the nsp14-nsp10 interaction for efficient enzymatic activity and virus replication, identify proximal and long-distance determinants of nsp14-nsp10 interaction, and support targeting the nsp14-10 interface for viral inhibition and attenuation.
Importance: Coronavirus replication requires assembly of a replication transcription complex composed of nonstructural proteins (nsp), including polymerase, helicase, exonuclease, capping enzymes, and non-enzymatic cofactors. The coronavirus nsp14 exoribonuclease mediates several functions in the viral life cycle including genomic and subgenomic RNA synthesis, RNA recombination, RNA proofreading and high-fidelity replication, and native resistance to many nucleoside analogs. The nsp-14 exonuclease activity requires the non-enzymatic co-factor nsp10, but the determinants and importance the nsp14-10 interactions during viral replication have not been defined. Here we show that for the coronavirus murine hepatitis virus, nsp14 residues at the nsp14-10 interface are essential for efficient viral replication and exonuclease activity. These results shed new light on the requirements for protein interactions within the coronavirus replication transcription complex, and they may reveal novel non active-site targets for virus inhibition and attenuation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463354 | PMC |
http://dx.doi.org/10.1101/2024.09.26.615217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!