Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. An exhaustive simulation of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8+ killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463398PMC
http://dx.doi.org/10.1101/2024.09.26.615149DOI Listing

Publication Analysis

Top Keywords

hnscc tme
12
tumor microenvironment
8
head neck
8
squamous cell
8
cell carcinoma
8
tumor cells
8
tme subtypes
8
ici response
8
ici
7
hnscc
7

Similar Publications

Due to their high developmental diversity and different regulatory and functional roles, B cell subpopulations can promote or inhibit tumor growth. An orthotopic murine HNSCC model was applied to investigate the B cell composition and function in HNSCCs. Using flow cytometry approaches, cells from the spleen, lymph nodes and tumors were analyzed.

View Article and Find Full Text PDF

Modulating tumor-associated macrophages through CSF1R inhibition: a potential therapeutic strategy for HNSCC.

J Transl Med

January 2025

Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, China.

Purpose: Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor microenvironment (TME), exhibiting dual roles across various cancer types. Depending on the context, TAMs can either suppress tumor progression and weaken drug sensitivity or facilitate tumor growth and drive therapeutic resistance. This study explores whether targeting TAMs can suppress the progression of head and neck squamous cell carcinoma (HNSCC) and improve the efficacy of chemotherapy.

View Article and Find Full Text PDF

Background: Treatment with immunotherapy can elicit varying responses across cancer types, and the mechanistic underpinnings that contribute to response vrsus progression remain poorly understood. However, to date there are few preclinical models that accurately represent these disparate disease scenarios.

Methods: Using combinatorial radio-immunotherapy consisting of PD-1 blockade, IL2Rβγ biased signaling, and OX40 agonism we were able to generate preclinical tumor models with conflicting responses, where head and neck squamous cell carcinoma (HNSCC) models respond and pancreatic ductal adenocarcinoma (PDAC) progresses.

View Article and Find Full Text PDF

Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%.

View Article and Find Full Text PDF

Background: Firstly, 5-hydroxytryptamine G-protein-coupled receptors () are a family of 13 genes associated with cancer progression. Nevertheless, a comprehensive understanding of in cancer remains largely lacking.

Method: We tested the gene expression levels and prognostic values for the in relation to pan-cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!