Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of dynamic strain holds the potential to manipulate topological invariants in topological quantum materials. This study investigates dynamic structural deformation and strain modulation in the Weyl semimetal WTe, focusing on the microscopic regions with static strain defects. The interplay of static strain fields, at local line defects, with dynamic strain induced from photo-excited coherent acoustic phonons results in the formation of local standing waves at the defect sites. The dynamic structural distortion is precisely determined utilizing ultrafast electron microscopy with nanometer spatial and gigahertz temporal resolutions. Numerical simulations are employed to interpret the experimental results and explain the mechanism for how the local strain fields are transiently modulated through light-matter interaction. This research provides the experimental foundation for investigating predicted phenomena such as the mixed axial-torsional anomaly, acoustogalvanic effect, and axial magnetoelectric effects in Weyl semimetals, and paves the road to manipulate quantum invariants through transient strain fields in quantum materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462575 | PMC |
http://dx.doi.org/10.1063/4.0000263 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!