Introduction: Pulmonary tuberculosis (PTB) remains one of the deadliest infectious diseases. Understanding PTB immunity is of potential value for exploring immunotherapy for treating chemotherapy-resistant PTB. CD4CD25Foxp3 regulatory T cells (Tregs) are key players that impair immune responses to (MTB). Currently, the intrinsic factors governing Treg expansion and influencing the immunosuppressive attributes of Tregs in PTB patients are far from clear.
Methods: Here, we employed flow cytometry to determine the frequency of Tregs and the expression of B and T lymphocyte attenuator (BTLA) and its ligand, herpesvirus entry mediator (HVEM), on Tregs in patients with active PTB. Furthermore, the expression of conventional T cells and of programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) on Tregs in patients with active PTB was determined. We then examined the characteristics of BTLA/HVEM expression and its correlation with Treg frequency and PD-L1 and PD-1 expression on Tregs in PTB patients.
Results: The frequency of Tregs was increased in PTB patients and it had a relevance to PTB progression. Intriguingly, the axis of cosignal molecules, BTLA and HVEM, were both downregulated on the Tregs of PTB patients compared with healthy controls (HCs), which was the opposite of their upregulation on conventional T cells. Unexpectedly, their expression levels were positively correlated with the frequency of Tregs, respectively. These seemingly contradictory results may be interpreted as follows: the downregulation of BTLA and HVEM may alleviate BTLA/HVEM -interaction-mediated coinhibitory signals pressing on naïve Tregs, helping their activation, while the BTLA/HVEM axis on effector Tregs induces a costimulatory signal, promoting their expansion. Certainly, the mechanism underlying such complex effects remains to be explored. Additionally, PD-L1 and PD-1, regarded as two of the markers characterizing the immunosuppressive attributes and differentiation potential of Tregs, were upregulated on the Tregs of PTB patients. Further analysis revealed that the expression levels of BTLA and HVEM were positively correlated with the frequency of PD-1Tregs and PD-L1Tregs, respectively.
Conclusion: Our study illuminated distinct characteristics of BTLA/HVEM axis expression on Tregs and uncovered its impact on the expansion and attributes of Tregs in patients with active PTB. Therefore, blockade of the BTLA/HVEM axis may be a promising potential pathway to reduce Treg expansion for the improvement of anti-MTB immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461443 | PMC |
http://dx.doi.org/10.3389/fcimb.2024.1437207 | DOI Listing |
Sci Rep
January 2025
Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan.
Systemic sclerosis (SSc) is an idiopathic systemic connective tissue disorder characterized by fibrosis of the skin and internal organs, with growing interest in the imbalance between Th17 cells and regulatory T cells (Tregs) in the disease's pathogenesis. Heligmosomoides polygyrus (Hp), a natural intestinal parasite of mice, is known to induce Tregs in the host. We aimed to investigate the effects of Hp-induced Tregs on bleomycin-induced dermal fibrosis and clarify the role of the Th17/Treg balance in SSc fibrosis.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China.
The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Baylor University Medical Center, Dallast, Texas, United States.
Purpose: Brentuximab vedotin (BV) is hypothesized to selectively deplete T regulatory cells (Tregs) that express CD30 and re-sensitize tumors to anti-(PD-1) therapy. This study evaluated responses to BV+pembrolizumab post PD-1 and explored corresponding biomarkers.
Methods: 55 patients with metastatic non-small cell lung cancer (NSCLC) and 58 with metastatic cutaneous melanoma received ≥1 dose of BV+pembrolizumab.
JCI Insight
January 2025
Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Maryland, USA.
BACKGROUNDCow's milk (CM) allergy is the most common food allergy in young children. Treatment with oral immunotherapy (OIT) has shown efficacy, but high rates of adverse reactions. The aim of this study was to determine whether baked milk OIT (BMOIT) could reduce adverse reactions while still inducing desensitization, and to identify immunological correlates of successful BMOIT.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Inserm, Sorbonne Université, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.
Background: Chronic innate neuroinflammation mediated by microglia and astrocytes in response to Aβ and pathological Tau species is a cardinal feature of AD that contributes to disease pathogenesis. Accumulating evidence now also highlight an instrumental role of T cells and peripheral-central immune crosstalk in the pathophysiology of AD. Both preclinical and clinical reports suggest the potential therapeutic interest of peripheral immunomodulatory approaches aimed at amplifying regulatory T cells (Tregs), e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!