A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exhaled breath of children swimmers conveniently collected in Teflon bags and used for trihalomethane determination by SPME-GC-MS. | LitMetric

Exhaled breath of children swimmers conveniently collected in Teflon bags and used for trihalomethane determination by SPME-GC-MS.

Anal Methods

The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.

Published: November 2024

AI Article Synopsis

  • * The study developed a non-invasive method using solid-phase microextraction and gas chromatography-mass spectrometry to measure THMs in children swimmers' exhaled breath, achieving high accuracy and reproducibility.
  • * Results showed that THMs, particularly trichloromethane, were significantly higher in breath samples after swimming, but swimming duration or frequency didn't show notable effects, suggesting the need for further comprehensive research.

Article Abstract

Trihalomethanes (THMs) are the most common disinfection by-products in swimming pools; however, they exhibit strong cytotoxicity and genotoxicity, posing health risks. Children are more vulnerable to swimming-related health risks than adults; therefore, a rapid and accurate assessment of internal THM exposure in children swimmers is important for health risk assessment. For internal exposure measurement, collecting exhaled breath samples is more convenient, non-invasive, and easier to perform than collecting blood and urine. Therefore, this study aimed to develop a rapid, accurate, and reproducible method for determining THMs in children swimmers' exhaled breath using solid-phase microextraction (SPME)-gas chromatography-mass spectrometry (GC-MS). The factors influencing the pretreatment procedure, including selecting SPME fibers, extraction temperature, and time, were systematically evaluated. Under the optimized conditions, the instrumental linearity range was 1-200 ng L with correlation coefficients >0.998. The limit of detection for this method was 0.3-0.5 ng L. The recovery values ranged between 76.87 and 111.49%. Detecting THMs at three different calibration levels using this method had an intra-day precision of 1.31-5.07%, while the inter-day precision was 1.59-11.10% ( = 6). Additionally, the SPME-GC-MS method was used to detect the concentration of THMs in children swimmers' exhaled breath before and after swimming. Trichloromethane was the most abundant THM in the air around the pool and children's exhaled breath, and THM concentrations in the children swimmers' exhaled breath increased significantly after swimming. This study found no significant differences in the concentrations of THMs in the children swimmers' exhaled breath with different swimming durations or frequencies, which may be a result of the unrepresentative sample population and small sample size, and more in-depth and comprehensive studies are needed to verify this conclusion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ay01499eDOI Listing

Publication Analysis

Top Keywords

exhaled breath
28
children swimmers'
16
swimmers' exhaled
16
thms children
12
children swimmers
8
health risks
8
rapid accurate
8
assessment internal
8
breath swimming
8
exhaled
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!