Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks. As an example, the printing of positively charged 5% w/v gelatin methacryloyl (GelMA) in a liquid granular bath prepared with negatively charged κ-carrageenan is proved to be achievable. By LL3DBP, printing capacity is greatly advanced and bioinks with over 90% v/v cell can be printed, and printed structures with high-cell-proportion exhibit excellent bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202412127DOI Listing

Publication Analysis

Top Keywords

liquid granular
16
granular bath
12
liquid bioinks
12
bioinks
8
liquid
8
bioinks liquid
8
embedded bioprinting
8
bioinks printing
8
printing capacity
8
diffusion liquid
8

Similar Publications

In the present study, we experimentally investigate the liquid flow induced in a rotating drum (cylindrical tank with a short aspect ratio) aligned horizontally, focusing on the variation in the time-averaged and fluctuating flow structures with different fill ratios. For each fill ratio, controlled by varying the water height, we measure the velocity fields at different cross-sectional planes with particle image velocimetry while varying the rotational speed of the drum. Compared to the condition of a fill ratio of 1.

View Article and Find Full Text PDF

The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water-Starch Polymer Interactions.

Foods

December 2024

Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.

The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).

View Article and Find Full Text PDF

The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod.

View Article and Find Full Text PDF

Mercury sequestration in alkaline salt low-level radioactive waste.

Environ Sci Pollut Res Int

January 2025

Savannah River National Laboratory, Aiken, SC, USA.

Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.

View Article and Find Full Text PDF

Potential and characteristics on nitrobenzene degradation by biological acidification.

J Environ Manage

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China. Electronic address:

Biological acidification, efficient and low-cost biotechnology, is crucial in treating pharmaceutical, pesticide water, and petrochemical wastewater. Nitrobenzene is a typical organic pollutant in petrochemical wastewater with high toxicity and long persistence. However, its effect on hydrolysis acidification is yet to be fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!