Coacervation, the phase separation of liquid induced by polymeric solutes, sometimes results in the formation of oligomeric clusters of droplets. The morphology of the clusters is non-uniform because the clustering is a consequence of the random collisions of the drifting droplets. Here we report distinctively organized coacervation, yielding colloidal molecules with monodisperse size, morphological symmetry, and compositional heterogeneity. We investigate the coacervation of a mixture of two types of synthetic polymers and find that one of the polymers coacervates first and serves as a core droplet, on which the other polymer coacervates subsequently to form satellite droplets. The satellite droplets arrange themselves symmetrically around the core and solidify without losing the morphology. The number of satellites and their symmetry are modulable depending on the chemical affinity and the diameter of the droplets. This finding highlights the capability of coacervation as a non-templated and non-covalent pathway to form aspherical colloidal materials with structural and functional complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202404934DOI Listing

Publication Analysis

Top Keywords

colloidal molecules
8
satellite droplets
8
coacervation
5
droplets
5
spontaneous formation
4
formation π-conjugated
4
π-conjugated polymeric
4
polymeric colloidal
4
molecules stepwise
4
stepwise coacervation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!