AI Article Synopsis

  • The COVID-19 pandemic has emphasized the need for quick and accurate point-of-care (POC) pathogen detection to control disease spread and protect global health.
  • Reagentless surface-enhanced Raman scattering (SERS) sensors are a potential solution, but their use is limited by challenges in administration, transportation, and storage.
  • The study found that freeze-drying (lyophilization) significantly improves the stability and usability of these sensors, making them more practical for testing in resource-limited areas.

Article Abstract

The COVID-19 pandemic has highlighted the importance of point-of-care (POC) pathogen detection. Accurate and accessible diagnostic techniques for virus identification are crucial for controlling the spread of diseases and have profound implications for our communities and global health. Reagentless surface-enhanced Raman scattering (SERS) sensors offer a promising solution for POC testing due to their capability to function without complex processing steps. However, their application in this space is limited by the fact that these solution-based assays are challenging to administer, transport and store. To overcome these limitations, we employed a freeze-drying (lyophilization) process on reagentless SERS sensors and investigated their improved stability and shelf-life. We explored this mechanism using different concentrations of cryoprotectants. Lyophilized sensors were then tested in a mix-and-detect fashion by adding to the dry sensors a drop of the sample, consisting of saliva spiked with target DNA oligonucleotides relative to different SARS-CoV-2 variants. In addition, we further uncovered how lyophilization benefits sensors with a DNA-catalysis mechanism. In summary, our findings indicate that lyophilization substantially enhances the practicality and usability of reagentless SERS sensors, contributing to the translation of this powerful diagnostic tool to POC testing in remote areas with limited resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630441PMC
http://dx.doi.org/10.1039/d4ay01667jDOI Listing

Publication Analysis

Top Keywords

sers sensors
12
poc testing
8
reagentless sers
8
sensors
6
lyophilizing sers
4
sers biosensors
4
biosensors enable
4
enable translation
4
translation easy-to-use
4
easy-to-use assay
4

Similar Publications

Plants communicate through volatile organic compounds (VOCs), but real-time monitoring of VOCs for plant intercommunication is not practically possible yet. A nanobionic VOC sensor plant is created to study VOC-mediated plant intercommunication by incorporating surface-enhanced Raman scattering (SERS) nanosensors into a living plant. This sensor allows real-time monitoring of VOC with a sensitivity down to the parts per trillion level.

View Article and Find Full Text PDF

A new high-sensitivity, low-cost, Surface Enhanced Raman Spectroscopy (SERS) sensor allows for the rapid multiplex detection of foodborne pathogens in raw poultry. Self-assembled microspheres are used to pattern a hexagonal close-packed array of nanoantennas onto a side-polished multimode fiber core. Each microsphere focuses UV radiation to a photonic nanojet within a layer of photoresist on the fiber which allows the nanoantenna geometry to be controlled.

View Article and Find Full Text PDF

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.

View Article and Find Full Text PDF

Enhanced quasi-meshing hotspot effect integrated embedded attention residual network for culture-free SERS accurate determination of Fusarium spores.

Biosens Bioelectron

December 2024

National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei, 230601, Anhui, China; School of Electronics and Information Engineering, Anhui University, Hefei, 230601, Anhui, China. Electronic address:

Determination of Fusarium spores is essential for precision control of Fusarium head blight and ensuring agri-food safety. As a highly sensitive real-time detection technique with rich fingerprint information and little influence from water, surface-enhanced Raman spectroscopy (SERS) has been widely applied in the determination of microorganisms. However, fungi determination faces significant challenges including low sensitivity, and poor specificity.

View Article and Find Full Text PDF

A novel phthalocyanine-based hybrid nanofilm is for the first time successfully applied as an oxidative platform for surface enhanced Raman spectroscopy (SERS) sensing to fine-resolve Raman-inactive compounds. The hybrid is formed by self-assembly of zinc(II) 2,3,9,10,16,17,23,24-Octa[(3',5'-dicarboxy)-phenoxy]phthalocyaninate (ZnPc*) with the solid-supported monolayer of graphene oxide (GO) mediated by zinc acetate metal cluster. Atomic force microscopy, UV-vis and fluorescence spectroscopies confirm that this simple coordination motive in combination with molecular structure of ZnPc* prevents contact quenching of the light-excited triplet state through aromatic stacking with GO particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: