Background: It is generally accepted that methylation status of CpG sites spaced up to 50 bp apart is correlated, and accumulation of locally disordered methylation at adjacent CpG sites is involved in neoplastic transformation, acting in similar way as stochastic accumulation of mutations.

Results: We used EPIC microarray data from 596 samples, representing 12 healthy tissue and cell types, as well as 572 blood cancer specimens to analyze methylation status of adjacent CpG sites across human genome, and subsequently validated our findings with NGS and Sanger sequencing. Our analysis showed that there is a subset of the adjacent CpG sites in human genome, with cytosine at one CpG site methylated and the other devoid of methyl group. These loci map to enhancers that are targeted by families of transcription factors involved in cell differentiation. Moreover, our results suggest that the methylation at these loci differ between alleles within a cell, what allows for remarkable level of heterogeneity of methylation patterns. However, different types of specialized cells acquire only one specific and stable pattern of methylation at each of these loci and that pattern is to a large extent lost during neoplastic transformation.

Conclusions: We identified a substantial number of adjacent CpG loci in human genome that display remarkably stable and cell type specific methylation pattern. The methylation pattern at these loci appears to reflect different methylation of alleles in cells. Furthermore, we showed that changes of methylation status at those loci are likely to be involved in regulation of the activity of enhancers and contribute to neoplastic transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465701PMC
http://dx.doi.org/10.1186/s13072-024-00555-5DOI Listing

Publication Analysis

Top Keywords

adjacent cpg
20
cpg sites
20
methylation status
12
human genome
12
methylation
11
methylation patterns
8
neoplastic transformation
8
sites human
8
methylation loci
8
pattern methylation
8

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Background: Sarcomas (SARC) are a diverse group of malignant tumors originating from mesenchymal tissues, characterized by poor prognosis under conventional therapies. CX3CR1, a chemokine receptor involved in immune cell migration, has emerged as a key player in SARC. Post-translational modifications (PTMs) such as phosphorylation and ubiquitination critically modulate CX3CR1, influencing cancer progression, immune responses, and treatment resistance.

View Article and Find Full Text PDF

Background: Studies have shown that DNA methylation of the CACNA1C gene is involved in the pathogenesis of various diseases and the mechanism of drug action. However, its relationship with atrial fibrillation (AF) remains largely unexplored.

Objective: To investigate the association between DNA methylation of the CACNA1C gene and AF by combining decitabine (5-Aza-2'-deoxycytidine, AZA) treatment with multi-omics analysis.

View Article and Find Full Text PDF

Attenuated sex-related DNA methylation differences in cancer highlight the magnitude bias mediating existing disparities.

Biol Sex Differ

December 2024

State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.

Background: DNA methylation (DNAm) influences both sex differences and cancer development, yet the mechanisms connecting these factors remain unclear.

Methods: Utilizing data from The Cancer Genome Atlas, we conducted a comprehensive analysis of sex-related DNAm effects in nine non-reproductive cancers, compared to paired normal adjacent tissues (NATs), and validated the results using independent datasets. First, we assessed the extent of sex differential DNAm between cancers and NATs to explore how sex-related DNAm differences change in cancerous tissues.

View Article and Find Full Text PDF

Time is encoded by methylation changes at clustered CpG sites.

bioRxiv

December 2024

Dept. of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Age-dependent changes in DNA methylation allow chronological and biological age inference, but the underlying mechanisms remain unclear. Using ultra-deep sequencing of >300 blood samples from healthy individuals, we show that age-dependent DNA methylation changes are regional and occur at multiple adjacent CpG sites, either stochastically or in a coordinated block-like manner. Deep learning analysis of single-molecule patterns in two genomic loci achieved accurate age prediction with a median error of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!