Gastric premalignant lesions can develop into cancer through multiple steps and inflammation plays a critical role. The aim of this study is to uncover the characteristics of macrophages and their gene expression in premalignant gastric lesions to identify novel biomarkers and potential targets for treatment. We used the computational algorithm CIBERSORT to estimate immune cell subsets present in gastric tissue. We applied WGCNA to identify inflammation-related modules and hub genes. Single-cell analysis was used to identify macrophage sub-clusters specific to pathology. In addition, the in-vitro experiment was performed to verify the mechanism of the key inflammatory factors in the growth of gastric cancer. WGCNA identified a module that was positively correlated with pathological changes and highly related to inflammation scores. Single-cell analysis revealed a macrophage subset, and we observed that S100A8 and S100A9 + macrophages made up a significantly higher proportion in early gastric cancer (EGC) tissues. Our functional enrichment analysis suggested that these macrophages may play a role in gastric tumorigenesis through the activation of the NFκB signaling pathway. In vitro experiments verified that S100A9 can promote the proliferation and migration of AGS cells through the TLR4-NFκB signaling pathway, and the S100A8/S100A9 inhibitor Paquinimod can inhibit their proliferation and migration. Our findings suggest that S100A8 and S100A9 + macrophages may activate the TLR4-NFκB signaling pathway to promote cell proliferation and migration leading to gastric tumor progression. Macrophages with high expression of S100A8/S100A9 are critical in the progression of gastric inflammation to cancer. Cytokine S100A9 can activate the TLR4-NFκB signaling pathway and promote the proliferation and migration of gastric adenocarcinoma cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464527 | PMC |
http://dx.doi.org/10.1038/s41598-024-74695-9 | DOI Listing |
J Kidney Cancer VHL
December 2024
Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
This study aims to reveal the potential molecular mechanisms of modified Gegen Qinlian decoction (MGQD) in relieving ulcerative colitis (UC). C57BL/6J mice were used to establish experimental colitis via dextran sodium sulfate (DSS). Body weight, disease activity index (DAI), spleen weight, colon length, and histopathologic features were measured to evaluate the therapeutic effects of MGQD on mice with UC.
View Article and Find Full Text PDFFront Immunol
January 2025
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.
Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).
Front Immunol
January 2025
Immunology Research Center, National Health Research Institute, Zhunan, Taiwan.
CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!