Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ancient murals embody profound historical, cultural, scientific, and artistic values, yet many are afflicted with challenges such as pigment shedding or missing parts. While deep learning-based completion techniques have yielded remarkable results in restoring natural images, their application to damaged murals has been unsatisfactory due to data shifts and limited modeling efficacy. This paper proposes a novel progressive reasoning network designed specifically for mural image completion, inspired by the mural painting process. The proposed network comprises three key modules: a luminance reasoning module, a sketch reasoning module, and a color fusion module. The first two modules are based on the double-codec framework, designed to infer missing areas' luminance and sketch information. The final module then utilizes a paired-associate learning approach to reconstruct the color image. This network utilizes two parallel, complementary pathways to estimate the luminance and sketch maps of a damaged mural. Subsequently, these two maps are combined to synthesize a complete color image. Experimental results indicate that the proposed network excels in restoring clearer structures and more vivid colors, surpassing current state-of-the-art methods in both quantitative and qualitative assessments for repairing damaged images. Our code and results will be publicly accessible at https://github.com/albestobe/PRN .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464508 | PMC |
http://dx.doi.org/10.1038/s41598-024-72368-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!