AI Article Synopsis

  • Sepsis is a severe condition caused by an abnormal immune response to infection, leading to organ dysfunction, and traditional RNA sequencing has limitations in determining key cell changes.
  • This study aims to enhance sepsis prognosis prediction by utilizing single-cell RNA sequencing (scRNA-seq) to identify critical cells, and integrating data from various algorithms to create a robust prognostic model.
  • The research employed different R packages to analyze data from sepsis patients, unveiled significant interactions among cell types, and identified noteworthy platelet genes crucial for understanding the disease's immunological landscape.

Article Abstract

Sepsis is a life-threatening organ malfunction induced by an imbalanced immunological reaction to infection in the host. Many studies have utilized traditional RNA sequencing (RNA-seq) data to identify important biological targets to predict sepsis prognosis. However, alterations in core cells and functional status cannot be effectively detected in sepsis patients. The goal of this study was to identify key cells through single-cell RNA-seq (scRNA-seq), and combine bulk RNA-seq data and multiple algorithm analysis to construct a stable prognostic model for sepsis. The scRNA-seq and bulk RNA-seq data from sepsis patients were collected from the Gene Expression Omnibus (GEO) database. The R package "Seurat" was used to process the scRNA-seq data. Cell communication was investigated using the R package "CellChat". The pseudo-time of the cells was calculated using the R package "monocle". The R package "limma" was used to identify differentially expressed genes (DEGs) between the sepsis group and the control group. Weighted gene correlation network analysis (WGCNA) was used to identify critical modules. Eight kinds of machine learning and 90 algorithm combinations were used to construct the prognostic model for sepsis. Quantitative real-time PCR (qRT‒PCR) was performed to determine the expression of key genes in the cecal ligation and puncture (CLP)-induced sepsis mouse model. The immunological status and related properties of DEGs were then investigated in the high- and low-risk groups delineated by the model. By combining the scRNA-seq data from nine samples, 13 clusters and 9 cell types were identified. CellChat analysis revealed that the number and strength of interactions between platelets and a variety of cells increased. We identified key platelet genes from the scRNA-seq data and combined these genes and the results of differential analysis and WGCNA of the bulk RNA-seq data. After univariate Cox regression analysis, we calculated the Cindex of the model constructed by the combination of 90 algorithms, and we finally determined the "CoxBoost + Lasso" combination. Multivariate Cox regression was used to construct the final prognostic model. The qRT-PCR results revealed significant differences in five key prognostic genes between the CLP and sham groups. The data was classified into high- and low-risk groups based on the model score. The high-risk group had a poorer survival rate and less immune infiltration. We identified the importance of platelets in sepsis patients through scRNA-seq, and established prognostic models with key genes that were identified via scRNA-seq combined with bulk RNA-seq analysis. The results of this model were closely associated with patient survival rates and immunological status and this model is useful for the prognostic management of sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464784PMC
http://dx.doi.org/10.1038/s41598-024-74052-wDOI Listing

Publication Analysis

Top Keywords

rna-seq data
16
bulk rna-seq
16
sepsis patients
12
prognostic model
12
scrna-seq data
12
sepsis
11
model
9
key platelet
8
platelet genes
8
data
8

Similar Publications

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results.

View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Metabolic Analysis of Tumor Cells Within Ameloblastoma at the Single-Cell Level.

Oral Dis

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: To meet their high energy needs, tumor cells undergo aberrant metabolic reprogramming. A tumor cell may expertly modify its metabolic pathways and the differential expression of the genes for metabolic enzymes. The physiological requirements of the host tissue and the tumor cell of origin mostly dictate metabolic adaptation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!