The indigenous arbuscular mycorrhizal fungi (AMF) spores were isolated from rhizosphere soil associated with maize plants grown in natural selenium-impacted agricultural soils present in north-eastern region of Punjab, India (32°46' N, 74°46' N), with selenium concentration ranging from 2.1 to 6.1 mg kg dry weight, and their role in plant growth promotion, mitigation of selenium stress and phytochemical and antioxidant potential of host maize plants in natural seleniferous soil were examined. Soils with selenium content between 2 and 200 mg kg and producing plants with 45 mg selenium kg dry weight are considered seleniferous soils. AMF inoculum consisting of indigenous AMF spores multiplied in pot cultures were inoculated to maize seeds at the time of sowing alongside control maize seeds in a total of 12 plots (6 replicates) made in seleniferous agricultural fields and sampled at maturity, i.e. 3 months. A significant difference was observed in plant growth parameters between control and AMF-inoculated maize plants. AMF-inoculated plants had 24.0 cm and 101.1 cm higher root and shoot length along with 27.2 g, 119.4 g and 28.1 g higher root, shoot and maize cob biomass in comparison to control plants. Se uptake studies through measurement of the emission spectrum of piazselenol complex by fluorescence spectrometry revealed that AMF inoculation led to 6.3 µg g more selenium accumulation in mycorrhizal maize roots in comparison to control roots but lesser translocation to shoots and seeds, i.e. 17.17 µg g and 19.58 µg g lesser. AMF increased total phenolic content by 13 µg GAE mg and total flavonoid content by 13.4 µg QE mg in inoculated maize plants when compared to control plants. Antioxidant studies revealed that AMF inoculation also led to significant rise in enzyme activities by a difference of 115 and 193 EU g in catalase, 140 and 93 EU g in superoxide dismutase, 15 and 37 EU g in ascorbate peroxidase and 19.8 and 23.6% higher DPPH radical scavenging activities, respectively, in shoots and roots of plants with AMF inoculation. The findings of this study imply that AMF inoculated to maize plants in seleniferous field boost their plant growth and phytochemical and antioxidant properties, as well as minimize Se bioaccumulation in shoots and seeds of plants inoculated with AMF in comparison to control plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-024-04410-2DOI Listing

Publication Analysis

Top Keywords

maize plants
20
plants
12
plant growth
12
inoculated maize
12
comparison control
12
control plants
12
amf inoculation
12
amf
9
maize
9
arbuscular mycorrhizal
8

Similar Publications

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Fusion transcripts in plants: hidden layer of transcriptome complexity.

Trends Plant Sci

January 2025

Bioinformatics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India. Electronic address:

In the realm of genetic information, fusion transcripts contribute to the intricate complexity of the transcriptome across various organisms. Recently, Cong et al. investigated these RNAs in rice, maize, soybean, and arabidopsis (Arabidopsis thaliana), revealing conserved characteristics.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Using maize plants expressing an apoplast targeted Aspergillus niger ferulic acid esterase (FAEA), with FAEA driven by a Lolium multiflorum senescence enhanced promoter (LmSee1), we extended measurements of FAEA activity to late-stage senescing plants and measured the stability of FAEA activity following stover storage. The impact of FAEA expression on cell wall hydroxycinnamic acid levels and arabinoxylan (AX) cross-links, and on the levels of cell wall sugars, acetyl bromide lignin and sugar release following saccharification by a cocktail of cellulases and xylanases, was assessed during plant development to full leaf senescence. These were determined in both individual internodes and in combined leaves and combined internodes of FAEA expressing and control partner plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!