AI Article Synopsis

  • The study examined the activation of the NLRP3 inflammasome pathway and macrophage distribution in patients with acute oxalate nephropathy (AON) compared to acute tubulointerstitial nephritis (ATIN).
  • In AON patients, significant increases in inflammation and NLRP3-related markers were observed, along with a notable presence of oxalate deposits and more severe tissue damage compared to ATIN patients.
  • A lower ratio of M1 to M2 macrophages was linked to worse kidney function and chronic lesions, suggesting the need for further research on these macrophage dynamics in kidney injury.

Article Abstract

Background: The current study was initiated to evaluate renal nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway activation and macrophage subtype distribution and their clinicopathological significance in a cohort of oxalate-induced acute kidney injury.

Methods: Twelve patients with biopsy-proven acute oxalate nephropathy (AON) from January 2016 to October 2022 were retrospectively enrolled, with estimated glomerular filtration rate (eGFR)-matched 24 patients with acute tubulointerstitial nephritis (ATIN) as disease control. Pathological lesions as well as markers of NLRP3 inflammasome pathway and macrophage phenotype detected by immunohistochemistry staining were semi-quantitatively analyzed.

Results: Oxalate depositions were found in 5% to 20% of tubules with a positive correlation with Sirius Red staining in AON specimens (rp = 0.668, p = 0.02). Disruption of tubular basement membrane and inflammatory cell reaction was more prominent in specimens of AON (both p < 0.05) as compared with ATIN specimens. The expressions of NLRP3, caspase-1, and gasdermin D were significantly increased in AON specimens as well (all p < 0.05). Patients with M1/M2 macrophage ratio <1 were found with more chronic tubulointerstitial lesions and presented with lower eGFR at the last follow-up (24.8  10.6 mL/min/1.73 m2 vs. 55.1  21.2 mL/min/1.73 m2, p = 0.02) in the AON group.

Conclusion: The NLRP3 inflammasome pathway was activated in the kidneys of AON patients, and the ratio of M1 and M2 macrophages was associated with chronicity of pathological changes, which needs further exploration.

Download full-text PDF

Source
http://dx.doi.org/10.23876/j.krcp.23.266DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
activation macrophage
8
patients acute
8
acute oxalate
8
oxalate nephropathy
8
inflammasome pathway
8
aon specimens
8
nlrp3
4
inflammasome activation
4
macrophage
4

Similar Publications

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model.

View Article and Find Full Text PDF

Galvanic current has been emerging as a novel therapy to regenerate chronic tissue lesions, including musculoskeletal and dermatological lesions. Recently, the NLRP3 inflammasome and IL-1β release have been identified as a signaling pathway triggered upon galvanic current application. However, the parameters for the clinical application of galvanic current remain subjective to the experience of the facultative in charge.

View Article and Find Full Text PDF

Neuroinflammation mediated by glial cells plays a crucial role in demyelination in experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS) model. Forsythoside B (FTS·B), a natural phenylethanoid glycoside isolated from the dried fruits and leaves of Forsythia suspensa (Thunb.) Vahl, has been found to have antioxidant, anti-apoptotic, and anti-inflammatory properties.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is susceptible to damage under high altitude hypoxic conditions, leading to gastrointestinal discomfort and intestinal barrier injury. Sodium butyrate, a short-chain fatty acid present as a metabolite in the gut, has emerged as a promising therapeutic agent due to its ability to act as an immunomodulatory agent and restore intestinal barrier integrity. This study aimed to explore the mechanism by which sodium butyrate exhibits anti inflammatory effect on intestinal epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!