AI Article Synopsis

  • * The study found that incorporating biochar (both 5% and 10%) and oyster shell powder during co-composting significantly improved the physicochemical properties and microbial diversity of the compost while maintaining the beneficial effects of seaweed.
  • * Specifically, biochar treatments led to an increase in humic substances and enhanced seed germination, while oyster shell powder effectively reduced waste weight without compromising compost quality, though it was less effective than biochar in promoting compost humification.

Article Abstract

Aquaculture and agricultural production generate substantial amounts of waste, including seaweed (which has plant-stimulating properties), oyster shells, and sugar residues. Through composting and appropriate management, these wastes have the potential to be converted into beneficial soil amendments. However, there is a lack of research exploring the potential of composting in promoting the conversion of seaweed into more stable humified forms, as well as in assessing whether composted seaweed retains its beneficial effects on plant growth. Additionally, studies on using oyster shells as additives to reduce waste pressure and comparing their effectiveness with biochar are relatively scarce. This study examines the impact of incorporating 5% corn stover biochar (T1), 10% biochar (T2), and 10% oyster shell powder (T3) on key physicochemical properties, product quality, and microbial community dynamics during the co-composting of seaweed and sugar residues. Results indicate that organic matter (OM) loss in T1 and T2 increased by 31.2% and 26.4%, respectively, compared to the control (CK). Moreover, Excitation-emission matrix (EEM) fluorescence spectroscopy revealed that humic substances in T1 and T2 surged by 434% and 423%, respectively, far exceeding the 289% increase in CK. The 10% biochar treatment also improved alginate degradation and seed germination index, due to the presence of biostimulants in seaweed and an increased abundance of Cobetia. Microbial analysis post-composting showed that T2 and T3 significantly enhanced the diversity and richness of bacterial communities. Notably, although oyster shell powder did not improve the humification degree of compost as significantly as biochar, it achieved effective weight reduction of waste (OM loss of 43.57%, far exceeding CK's 35.34%) without hindering the composting process. All four compost treatments retained the plant-stimulating effects of seaweed and facilitated alginate degradation. These results underscore the potential of biochar to enhance composting efficiency and utilize composting to process large quantities of oyster shell waste.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143500DOI Listing

Publication Analysis

Top Keywords

oyster shell
16
co-composting seaweed
8
seaweed sugar
8
oyster shells
8
sugar residues
8
biochar 10%
8
10% biochar
8
shell powder
8
alginate degradation
8
composting process
8

Similar Publications

A c-type lectin with dual function of immunology and mineralization from the freshwater oyster ( Lea).

Front Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.

Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Coastal ecosystems are degraded worldwide and oyster reefs are among the most threatened coastal habitats. Oysters are a critical ecosystem engineer and valuable fishery species, thus effective management strategies must balance tradeoffs between protecting reef ecosystems and continued human use. Management practices for oysters commonly incorporate shell replenishment (provisioning hard substrates to increase reef relief) and spatial management (rotational harvest areas or sanctuaries); however, the impact of these practices on reef dynamics and fisheries outcomes are poorly understood, particularly on harvested reefs.

View Article and Find Full Text PDF

Identification of long non-coding RNAs and their multiple regulation mechanism in shell deposition of pearl oyster.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Fishery collage, Guangdong Ocean University, 524088 Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524033, China. Electronic address:

Biomineralization to fabricate diverse morphology shell is typical character of bivalve species and ectopic calcification to form is the production of defense. Long non-coding RNAs (LncRNAs) plays critical roles in multiple cellular biological processes in invertebrate and vertebrate. However, LncRNAs remain poorly understood about expression and regulation roles in bivalve biomineralization studies.

View Article and Find Full Text PDF

Continuous-flow phosphate removal using Cry-Ca-COS Monolith: Insights from dynamic adsorption modeling.

Water Res X

May 2025

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand.

This study rigorously evaluates the adsorption performance of the Cry-Ca-COS monolith for phosphate removal in a column operation mode. Characterization of the material both before and after exhaustion in a continuous flow system (column form) showed no difference compared to results from a batch system (tablet form). The XPS results indicated that the adsorption mechanism of phosphate on the Cry-Ca-COS column involved surface microprecipitation and ligand exchange (inner-sphere complexation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!