A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mathematical framework for the statistical interpretation of biological growth models. | LitMetric

A mathematical framework for the statistical interpretation of biological growth models.

Biosystems

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK. Electronic address:

Published: December 2024

Biological entities are inherently dynamic. As such, various ecological disciplines use mathematical models to describe temporal evolution. Typically, growth curves are modelled as sigmoids, with the evolution modelled by ordinary differential equations. Among the various sigmoid models, the logistic, Gompertz and Richards equations are well-established and widely used for the purpose of fitting growth data in the fields of biology and ecology. The present paper puts forth a mathematical framework for the statistical analysis of population growth models. The analysis is based on a mathematical model of the population-environment relationship, the theoretical foundations of which are discussed in detail. By applying this theory, stochastic evolutionary equations are obtained, for which the logistic, Gompertz, Richards and Birch equations represent a limiting case. To substantiate the models of population growth dynamics, the results of numerical simulations are presented. It is demonstrated that a variety of population growth models can be addressed in a comparable manner. It is suggested that the discussed mathematical framework for statistical interpretation of the joint population-environment evolution represents a promising avenue for further research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2024.105342DOI Listing

Publication Analysis

Top Keywords

mathematical framework
12
framework statistical
12
growth models
12
population growth
12
statistical interpretation
8
logistic gompertz
8
gompertz richards
8
growth
6
models
6
mathematical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!