Solar interfacial evaporation employing wood-derived substrates is increasingly acknowledged as a viable desalination and wastewater treatment technique. This study presents an optimized method that enhances the efficiency of solar interfacial evaporation by applying a coating of lignin-polyaniline composites (EHL-PANI) onto balsa wood substrates. Initial assessments involved comparing evaporators made from various kinds of wood, identifying balsa wood-based photothermal evaporators as the most effective, with an evaporation rate of 1.63 kg·m·h and an efficiency of 72.7 %. Photothermal properties were further improved through the chemical oxidation of enzymatic hydrolysis lignin (EHL) with polyaniline, producing a composite with notably high dispersion stability and uniform particle distribution. This modification resulted in reduced particle size and enhanced stability of the polyaniline, which is crucial for boosting photothermal activity. Additionally, the EHL-PANI composites demonstrated exceptional light absorption, exceeding 95 %, and significant photothermal conversion efficiency across a broad wavelength range, attributable to polyaniline's broadband light absorption characteristics. A prototype evaporator, featuring the EHL-PANI coated on a balsa wood substrate, was constructed to assess performance, achieving a water evaporation rate of 2.10 kg·m·h and an efficiency of 80.7 % under solar illumination of 1 kW·m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!