Acute respiratory distress syndrome (ARDS) is characterized by protein rich edema due to alveolar-capillary barrier dysfunction caused by inflammatory processes. Currently, our understanding of the inflammatory response in patients with ARDS is mainly based on assessment of the systemic compartment and preclinical studies. Investigations into the intricate network of immune cells and their critical functions in the alveolar compartment remain limited. However, with recent improvements in single cell analyses, our comprehensive understanding of the interactions between immune cells in the lungs has improved. In this review, we summarize the current knowledge about the cellular composition and interactions of different immune cell types within the alveolar space of patients with ARDS. Neutrophils and macrophages are the predominant immune cells in the alveolar space of ARDS patients. Yet, all immune cells present, including lymphocytes, participate in complex interactions, coordinate recruitment, modulate the lifespan and control apoptosis through various signaling pathways. Moreover, the cellular composition of alveolar immune cells is associated with clinical outcomes of ARDS patients. In conclusion, this synthesis advances our understanding of ARDS immunology, emphasizing the crucial role of immune cells within the alveolar space. Associations between cellular composition and clinical outcomes highlight the significance of exploring distinct alveolar immune cell subsets. Such exploration holds promise for uncovering novel therapeutic targets in ARDS pathophysiology, presenting avenues for enhancing clinical management and treatment strategies for ARDS patients. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2024-0176TR | DOI Listing |
Clin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.
View Article and Find Full Text PDFVet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Missenden Rd, NSW , Camperdown, 2050, Australia.
Melanoma is an immunogenic tumor. The melanoma tumor immune microenvironment (TIME) is made up of a heterogenous mix of both immune and non-immune cells as well as a multitude of signaling molecules. The interactions between tumor cells, immune cells and signaling molecules affect tumor progression and therapeutic responses.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Division of Gastroenterology and Hepatology, 200 1st Street SW, Rochester, MN, 55905, USA.
Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!