A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tea polyphenols coating improves physiological properties, microstructure and chemical composition of cuticle to suppress quality deterioration of passion fruit during cold storage. | LitMetric

AI Article Synopsis

  • - The study focuses on the plant cuticle's importance in maintaining postharvest quality and shelf life of horticultural crops, particularly addressing the quality issues of passion fruit caused by peel wrinkling after harvest.
  • - Treatment with tea polyphenols (TPs) significantly reduces weight loss, keeps firmness, and lowers cell membrane permeability in passion fruit during cold storage, thereby enhancing cuticle thickness and structural integrity.
  • - Metabolomics analysis shows that TPs treatment boosts levels of certain fatty acids and alcohols in the fruit's peel cuticle, suggesting TPs could be an effective method for improving preservation and preventing quality degradation of passion fruit postharvest.

Article Abstract

The plant cuticle plays a crucial role in modulating postharvest quality and extending shelf life of horticultural crops. Passion fruit often suffers from quality degradation primarily due to peel wrinkling after harvest. Tea polyphenols (TPs) hold potential for enhancing postharvest preservation. However, the specific effects of TPs coating on preservation of passion fruit, as well as the underlying mechanisms involving cuticle regulation, have not been thoroughly investigated. This study demonstrated that treating 'Qinmi no.9' passion fruit with TPs at a concentration of 0.1 g L significantly mitigates weight loss, maintains firmness, and reduces cell membrane permeability during storage at 10 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that TPs treatment notably enhances cuticle thickness and structural integrity. Furthermore, gas chromatography-mass spectrometry (GC-MS) and metabolomics analyses indicated that TPs treatment obviously promotes the accumulation of palmitic acid, stearic acid, and their derivatives-primarily 12-Octadecenoic acid and 10(E)-Octadecenoic acid-as well as increases the levels of 11-Octadecenoic acid, primary alcohols such as 1-Eicosanol, and long-chain alkanes (including C31 and C32 alkanes) in the fruit peel cuticle. These biochemical changes contribute to the quality maintenance of passion fruit during cold storage. The findings suggest that TPs treatment is a promising biological strategy for extending shelf life and mitigating quality degradation by regulating cuticle metabolism in postharvest passion fruit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.141524DOI Listing

Publication Analysis

Top Keywords

passion fruit
24
tps treatment
12
tea polyphenols
8
fruit cold
8
cold storage
8
extending shelf
8
shelf life
8
quality degradation
8
electron microscopy
8
fruit
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!