Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The plant cuticle plays a crucial role in modulating postharvest quality and extending shelf life of horticultural crops. Passion fruit often suffers from quality degradation primarily due to peel wrinkling after harvest. Tea polyphenols (TPs) hold potential for enhancing postharvest preservation. However, the specific effects of TPs coating on preservation of passion fruit, as well as the underlying mechanisms involving cuticle regulation, have not been thoroughly investigated. This study demonstrated that treating 'Qinmi no.9' passion fruit with TPs at a concentration of 0.1 g L significantly mitigates weight loss, maintains firmness, and reduces cell membrane permeability during storage at 10 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that TPs treatment notably enhances cuticle thickness and structural integrity. Furthermore, gas chromatography-mass spectrometry (GC-MS) and metabolomics analyses indicated that TPs treatment obviously promotes the accumulation of palmitic acid, stearic acid, and their derivatives-primarily 12-Octadecenoic acid and 10(E)-Octadecenoic acid-as well as increases the levels of 11-Octadecenoic acid, primary alcohols such as 1-Eicosanol, and long-chain alkanes (including C31 and C32 alkanes) in the fruit peel cuticle. These biochemical changes contribute to the quality maintenance of passion fruit during cold storage. The findings suggest that TPs treatment is a promising biological strategy for extending shelf life and mitigating quality degradation by regulating cuticle metabolism in postharvest passion fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141524 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!