Anoikis, a form of programmed cell death induced by loss of cell contact, is closely associated with tumor invasion and metastasis, making it highly significant in lung cancer research. We examined the expression patterns and prognostic relevance of Anoikis-related genes (ARGs) in lung adenocarcinoma (LUAD) using the TCGA-LUAD database. This study identified molecular subtypes associated with Anoikis in LUAD and conducted functional enrichment analyses. We constructed an ARG risk score using univariate least absolute shrinkage and selection operator (LASSO) Cox regression, validated externally with GEO datasets and clinical samples. The clinical applicability of the prognostic model was evaluated using nomograms, calibration curves, decision curve analysis (DCA), and time-dependent AUC assessments. We identified four prognostically significant genes (PLK1, SLC2A1, CDKN3, PHLDA2) and two ARG-related molecular subtypes. ARGs were generally upregulated in LUAD and correlated with multiple pathways including the cell cycle and DNA replication. The prognostic model indicated that the low-risk group had better outcomes and significant correlations with clinicopathological features, tumor microenvironment, immune therapy responses, drug sensitivity, and pan-RNA epigenetic modification-related genes. Patients with low-risk LUAD were potential beneficiaries of immune checkpoint inhibitor (ICI) therapy. Prognostic ARGs' distribution and expression across various immune cell types were further analyzed using single-cell RNA sequencing. The pivotal role of CDKN3 in LUAD was confirmed through qRT-PCR and gene knockout experiments, demonstrating that CDKN3 knockdown inhibits tumor cell proliferation, migration, and invasion. Additionally, we constructed a ceRNA network involving CDKN3/hsa-miR-26a-5p/SNHG6, LINC00665, DUXAP8, and SLC2A1/hsa-miR-218-5p/RNASEH1-AS1, providing new insights for personalized and immune therapy decisions in LUAD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113282DOI Listing

Publication Analysis

Top Keywords

anoikis-related genes
8
lung adenocarcinoma
8
molecular subtypes
8
prognostic model
8
immune therapy
8
luad
6
prognostic
5
cell
5
integrative analysis
4
analysis anoikis-related
4

Similar Publications

Novel anoikis-related diagnostic biomarkers for aortic dissection based on machine learning.

Sci Rep

December 2024

Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.

Aortic dissection (AD) is one of the most dangerous diseases of the cardiovascular system, which is characterized by acute onset and poor prognosis, while the pathogenesis of AD is still unclear and may affect or even delay the diagnosis of AD. Anchorage-dependent cell death (Anoikis) is a special mode of cell death, which is programmed cell death caused by normal cells after detachment from extracellular matrix (ECM) and has been widely studied in the field of oncology in recent years. In this study, we applied bioinformatics analysis, according to the results of research analysis and Gene Ontology (GO), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG), finally found 3 anoikis-related genes (ARGs) based on machine learning.

View Article and Find Full Text PDF

There is growing evidence that programmed cell death plays a significant role in the pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH). Anoikis is a newly discovered type of programmed death and has garnered great attention. However, the precise involvement of Anoikis in the progression of CTEPH remains poorly understood.

View Article and Find Full Text PDF

Identification and Validation of Molecular Features of the Anoikis Gene-Related Hub Genes in Nasopharyngeal Carcinoma.

Appl Biochem Biotechnol

December 2024

Department of Otolaryngology, Beilun District People's Hospital of Ningbo, Beilun District, No. 1288, Lushan East Road, Ningbo City, China.

Article Synopsis
  • Nasopharyngeal carcinoma (NPC) is a type of cancer that arises from the nasopharyngeal mucosa, and resistance to a form of cell death called anoikis can increase cancer spread.
  • Researchers studied genes related to anoikis (ARGs) in NPC using a dataset and found 77 genes that were expressed differently in NPC tissues, indicating their importance in cancer development.
  • Key genes identified, including MYC, FN1, BRCA1, and FGF2, were found to be involved in critical cancer pathways and displayed correlations with immune cell types, suggesting these ARGs could be potential targets for treatment in NPC.
View Article and Find Full Text PDF

Background: Anoikis, a unique form of cell death, serves as a vital part of the organism's defense by preventing shedding cells from re-attaching to the incorrect positions, and plays pivotal role in cancer metastasis. Nonetheless, the specific mechanisms among anoikis, the clinical prognosis and tumor microenvironment (TME) of bladder cancer (BLCA) are insufficiently understood.

Method: BLCA patients were classified into different anoikis subtypes based on the expression of candidate anoikis-related genes (ARGs), and differences in the clinicopathological features, TME, immune cell infiltration, and immune checkpoints between two anoikis subtypes were analyzed.

View Article and Find Full Text PDF

Background: Anoikis disrupts the normal apoptotic process in cells, leading to abnormal proliferation and migration, thereby promoting tumor formation and development. However, the role of anoikis in bladder urothelial carcinoma (BLCA) still requires further exploration.

Methods: Anoikis-related genes (ARGs) were retrieved from the GeneCards and Harmonizome databases to distinguish various subtypes of BLCA and develop a predictive model for BLCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!