Microplastics (MPs) pollution is recognized as a global emerging threat with serious potential impacts on ecosystems. Our meta-analysis was conducted based on 117 carefully selected publications, from which 2160 datasets were extracted. These publications described experiments in which MPs were added to soil (in laboratory or greenhouse experiments or in the field) after which the soil microbial community was analyzed and compared to a control group. From these publications, we extracted 1315 observations on soil bacterial alpha diversity and richness indices and 845 datasets on gene abundance of bacterial genes related to the soil nitrogen cycle. These data were analyzed using a multiple hierarchical mixed effects meta-analysis. The mean effect of microplastic exposure was a significant decrease of soil bacterial community diversity and richness. We explored these responses for different regulators, namely MPs addition rates, particle size and plastic type, soil texture and land use, and study type. Of the bacterial processes involved in the soil nitrogen cycle, MPs addition significantly promoted assimilation of ammonium, nitrogen fixation and urea decomposition, but significantly inhibited nitrification. These results suggest that MPs contamination may have considerable impacts on soil bacterial community structure and function as well as on the soil nitrogen cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!