AI Article Synopsis

  • - Efficient sensory detection involves ignoring irrelevant information, like separating self-movement from object perception, using a model based on predictive coding and sensorimotor mismatch detection.
  • - Researchers created a model with a three-neuron circuit that shows how these mismatch responses occur, integrating this into a broader neural network with two streams that predict self-generated optic flow and process external movement cues.
  • - The model allows for the segmentation of objects from their background and supports object categorization, showing similarities between the neural processes in different species, including primates.

Article Abstract

Efficient sensory detection requires the capacity to ignore task-irrelevant information, for example when optic flow patterns created by egomotion need to be disentangled from object perception. To investigate how this is achieved in the visual system, predictive coding with sensorimotor mismatch detection is an attractive starting point. Indeed, experimental evidence for sensorimotor mismatch signals in early visual areas exists, but it is not understood how they are integrated into cortical networks that perform input segmentation and categorization. Our model advances a biologically plausible solution by extending predictive coding models with the ability to distinguish self-generated from externally caused optic flow. We first show that a simple three neuron circuit produces experience-dependent sensorimotor mismatch responses, in agreement with calcium imaging data from mice. This microcircuit is then integrated into a neural network with two generative streams. The motor-to-visual stream consists of parallel microcircuits between motor and visual areas and learns to spatially predict optic flow resulting from self-motion. The second stream bidirectionally connects a motion-selective higher visual area (mHVA) to V1, assigning a crucial role to the abundant feedback connections to V1: the maintenance of a generative model of externally caused optic flow. In the model, area mHVA learns to segment moving objects from the background, and facilitates object categorization. Based on shared neurocomputational principles across species, the model also maps onto primate visual cortex. Our work extends Hebbian predictive coding to sensorimotor settings, in which the agent actively moves - and learns to predict the consequences of its own movements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106716DOI Listing

Publication Analysis

Top Keywords

optic flow
20
sensorimotor mismatch
16
externally caused
12
caused optic
12
predictive coding
12
self-generated externally
8
coding sensorimotor
8
visual areas
8
area mhva
8
optic
5

Similar Publications

RFC3 Knockdown Decreases Cervical Cancer Cell Proliferation, Migration and Invasion.

Cancer Genomics Proteomics

December 2024

Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea

Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.

View Article and Find Full Text PDF

Objective: Multiple sclerosis (MS) may present with predominant involvement of the spinal cord and optic nerve (MS/w-SCON) and mimic other autoimmune inflammatory demyelinating disorders (AIDD) such as neuromyelitis optica spectrum disorder (NMOSD), and relapsing inflammatory optic neuritis (RION). Thus, biomarkers are required for effective differential diagnosis of AIDD.

Methods: Patients with MS/w-SCON (n = 20), MS without involvement of SCON (MS/wo-SCON) (n = 22), NMOSD (n = 16), RION (n = 15) and healthy individuals (n = 21) were included.

View Article and Find Full Text PDF

Detection of Retinal and Choriocapillaris Microvascular Changes in Retinal Vein Occlusion and Fellow Eyes by Optical Coherence Tomography Angiography: A Systematic Review and Meta-Analysis.

Ophthalmol Ther

December 2024

Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.

Introduction: This study aims to summarize the retinal and choroidal microvascular features detected by optical coherence tomography angiography (OCTA) in the affected and fellow eyes of patients with retinal vein occlusion (RVO).

Methods: A comprehensive search of the PubMed, Embase, and Ovid databases was conducted to identify studies comparing OCTA metrics among RVO, RVO-fellow, and control eyes. Outcomes of interest included parameters related to foveal avascular zone (FAZ) and fovea- and optic nerve head (ONH)-centered perfusion measurements of superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris layer.

View Article and Find Full Text PDF

Revisiting hydrogen peroxide as radiosensitizer for solid tumor cells.

Radiother Oncol

December 2024

Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium. Electronic address:

Background And Purpose: Tumor hypoxia is the principal cause of clinical radioresistance. Despite its established role as radiosensitizer, hydrogen peroxide (HO) encounters clinical limitations due to stability and toxicity concerns. Recent advancements in drug delivery combine HO with sodium hyaluronate (SH), enabling intratumoral administration of HO.

View Article and Find Full Text PDF

Genome or prime editing has become a promising tool for the treatment of hereditary disorders affecting the inner retina, such as dominant optic neuropathies. In vivo delivery of gene editors, such as Cas9, is typically achieved using recombinant adeno-associated virus (rAAV) vectors, which have a broad range of cellular tropisms and are well tolerated following intravitreal administration. Owing to the large size of gene editing constructs and the limited carrying capacity of rAAV (<5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!