AI Article Synopsis

  • - The study aims to improve the diagnosis of non-traumatic brachial plexopathy using deep learning models applied to routine MRI scans from patients at Mayo Clinic over a 20-year period.
  • - Researchers analyzed data from 196 patients and 256 MRI series, categorizing the abnormal cases and comparing the performance of six different deep learning approaches for identifying abnormalities in the brachial plexus.
  • - The best model, using a feature merging strategy with multiple MRI sequences, achieved a high accuracy (89.5%) and AUC (92.2%), indicating strong potential for using advanced AI techniques in diagnosing this condition.

Article Abstract

Purpose: This study aims to seek an optimized deep learning model for differentiating non-traumatic brachial plexopathy from routine MRI scans.

Materials And Methods: This retrospective study collected patients through the electronic medical records (EMR) or pathological reports at Mayo Clinic and underwent BP MRI from January 2002 to December 2022. Using sagittal T1, fluid-sensitive and post-gadolinium images, a radiology panel selected BP's region of interest (ROI) to form 3 dimensional volumes for this study. We designed six deep learning schemes to conduct BP abnormality differentiation across three MRI sequences. Utilizing five prestigious deep learning networks as the backbone, we trained and validated these models by nested five-fold cross-validation schemes. Furthermore, we defined a 'method score' derived from the radar charts as a quantitative indicator as the guidance of the preference of the best model.

Results: This study selected 196 patients from initial 267 candidates. A total of 256 BP MRI series were compiled from them, comprising 123 normal and 133 abnormal series. The abnormal series included 4 sub-categories, et al. breast cancer (22.5 %), lymphoma (27.1 %), inflammatory conditions (33.1 %) and others (17.2 %). The best-performing model was produced by feature merging mode with triple MRI joint strategy (AUC, 92.2 %; accuracy, 89.5 %) exceeding the multiple channel merging mode (AUC, 89.6 %; accuracy, 89.0 %), solo channel volume mode (AUC, 89.2 %; accuracy, 86.7 %) and the remaining. Evaluated by method score (maximum 2.37), the feature merging mode with backbone of VGG16 yielded the highest score of 1.75 under the triple MRI joint strategy.

Conclusion: Deployment of deep learning models across sagittal T1, fluid-sensitive and post-gadolinium MRI sequences demonstrated great potential for brachial plexopathy diagnosis. Our findings indicate that utilizing feature merging mode and multiple MRI joint strategy may offer satisfied deep learning model for BP abnormalities than solo-sequence analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111744DOI Listing

Publication Analysis

Top Keywords

deep learning
24
merging mode
16
brachial plexopathy
12
feature merging
12
mri joint
12
non-traumatic brachial
8
learning networks
8
learning model
8
mri
8
sagittal fluid-sensitive
8

Similar Publications

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.

View Article and Find Full Text PDF

Introduction: While the fact that visual stimuli synthesized by Artificial Neural Networks (ANN) may evoke emotional reactions is documented, the precise mechanisms that connect the strength and type of such reactions with the ways of how ANNs are used to synthesize visual stimuli are yet to be discovered. Understanding these mechanisms allows for designing methods that synthesize images attenuating or enhancing selected emotional states, which may provide unobtrusive and widely-applicable treatment of mental dysfunctions and disorders.

Methods: The Convolutional Neural Network (CNN), a type of ANN used in computer vision tasks which models the ways humans solve visual tasks, was applied to synthesize ("dream" or "hallucinate") images with no semantic content to maximize activations of neurons in precisely-selected layers in the CNN.

View Article and Find Full Text PDF

Decorrelative network architecture for robust electrocardiogram classification.

Patterns (N Y)

December 2024

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

To achieve adequate trust in patient-critical medical tasks, artificial intelligence must be able to recognize instances where they cannot operate confidently. Ensemble methods are deployed to estimate uncertainty, but models in an ensemble often share the same vulnerabilities to adversarial attacks. We propose an ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse features, reducing the chance of perturbation-based fooling.

View Article and Find Full Text PDF

Deep Learning for Discrimination of Early Spinal Tuberculosis from Acute Osteoporotic Vertebral Fracture on CT.

Infect Drug Resist

January 2025

Department of Orthopedics, First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.

Background: Early differentiation between spinal tuberculosis (STB) and acute osteoporotic vertebral compression fracture (OVCF) is crucial for determining the appropriate clinical management and treatment pathway, thereby significantly impacting patient outcomes.

Objective: To evaluate the efficacy of deep learning (DL) models using reconstructed sagittal CT images in the differentiation of early STB from acute OVCF, with the aim of enhancing diagnostic precision, reducing reliance on MRI and biopsies, and minimizing the risks of misdiagnosis.

Methods: Data were collected from 373 patients, with 302 patients recruited from a university-affiliated hospital serving as the training and internal validation sets, and an additional 71 patients from another university-affiliated hospital serving as the external validation set.

View Article and Find Full Text PDF

Adaptive Treatment of Metastatic Prostate Cancer Using Generative Artificial Intelligence.

Clin Med Insights Oncol

January 2025

Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada.

Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!