AI Article Synopsis

  • - Sepsis is a severe immune reaction to infection that can lead to organ failure, and while current diagnostic methods exist, there's a need for quicker and more precise tests to improve survival rates.
  • - Researchers developed a 3D-printed microfluidic chip designed to capture specific sepsis cells in blood samples using antibodies CD69, CD64, and CD25, validating its effectiveness with clinical samples from 125 septic patients and 10 healthy individuals.
  • - The chip showed significant differences in antigen cell counts between healthy volunteers and septic patients, with a high diagnostic accuracy (AUC values exceeding 0.988 for individual markers and 0.997 for a combined panel), and offered results within 4 hours, much faster

Article Abstract

Sepsis is a life-threatening immune response to infection in the body, eventually resulting in fatal organ failure. Current methods utilize blood cultures and quick-Sequential-Organ-Failure-Assessment (qSOFA), but there is a need for more accurate and time-sensitive diagnostic methods to improve survival rates. We present a 3D-printed microfluidic chip that bioconjugates antibodies CD69, CD64, and CD25 to channel surfaces to capture sepsis cells in blood samples and validate it with clinical samples (n = 125 septic, n = 10 healthy). Other variables were taken such as healthy volunteer blood samples and patient demographics to validate and confirm our device's diagnostic ability. Statistical differences were found between healthy volunteer and sepsis patient antigen cell counts (CD69 p-value < 0.001, CD64 p-value < 0.004, CD25 p-value < 0.0009), and were confirmed using principal component analysis. Demographics such as length of stay, age, culture results, and need for surgery also factored into sepsis detection on a smaller scale than the antigen cell counts. The receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.989, 0.988, and 0.992 for CD69, CD64, and CD25, respectively, and a combined biomarker panel of 0.997. Overall, the device performed within a shorter time frame of 4 h compared to standard blood culture tests and was validated for use in detecting sepsis in patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116500DOI Listing

Publication Analysis

Top Keywords

cd69 cd64
12
cd64 cd25
12
3d-printed microfluidic
8
microfluidic chip
8
sepsis detection
8
blood samples
8
healthy volunteer
8
antigen cell
8
cell counts
8
sepsis
6

Similar Publications

Affinity-based 3D-printed microfluidic chip for clinical sepsis detection with CD69, CD64, and CD25.

J Pharm Biomed Anal

January 2025

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA. Electronic address:

Article Synopsis
  • - Sepsis is a severe immune reaction to infection that can lead to organ failure, and while current diagnostic methods exist, there's a need for quicker and more precise tests to improve survival rates.
  • - Researchers developed a 3D-printed microfluidic chip designed to capture specific sepsis cells in blood samples using antibodies CD69, CD64, and CD25, validating its effectiveness with clinical samples from 125 septic patients and 10 healthy individuals.
  • - The chip showed significant differences in antigen cell counts between healthy volunteers and septic patients, with a high diagnostic accuracy (AUC values exceeding 0.988 for individual markers and 0.997 for a combined panel), and offered results within 4 hours, much faster
View Article and Find Full Text PDF

Sepsis is a serious medical condition that arises from a runaway response to an infection, which triggers the immune system to release chemicals into the bloodstream. This immune response can result in widespread inflammation throughout the body, which may cause harm to vital organs and, in more severe cases, lead to organ failure and death. Timely and accurate diagnosis of sepsis remains a challenge in analytical diagnostics.

View Article and Find Full Text PDF

Microfluidic Chips for Sepsis Diagnosis.

Methods Mol Biol

August 2021

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.

This chapter discusses two microfluidic-based approaches for early sepsis detection that achieve a higher accuracy than traditional blood culture analysis. Patient blood samples were included in this work to validate the performance of our chips in diagnosing sepsis. The single-parameter chip demonstrated the increased accuracy if using CD64 as a biomarker for sepsis detection compared with C-reactive protein (CRP) and procalcitonin (PCT) when applied alone.

View Article and Find Full Text PDF

A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells.

Clin Exp Immunol

March 2021

Geoffrey Jefferson Brain Research Centre, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.

Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects.

View Article and Find Full Text PDF

Evaluating the Timeliness and Specificity of CD69, CD64, and CD25 as Biomarkers of Sepsis in Mice.

Shock

April 2021

Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.

Sepsis occurs when an infection induces a dysregulated immune response, and is most commonly bacterial in origin. This condition requires rapid treatment for successful patient outcomes. However, the current method to confirm infection (blood culture) requires up to 48 h for a positive result and many true cases remain culture-negative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!