Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current developments in single-cell mass spectrometry (MS) aim to deepen proteome coverage while enhancing analytical speed to study entire cell populations, one cell at a time. Custom-built microanalytical capillary electrophoresis (μCE) played a critical role in the foundation of discovery single-cell MS proteomics. However, requirements for manual operation, substantial expertise, and low measurement throughput have so far hindered μCE-based single-cell studies on large numbers of cells. Here, we design and construct a robotic capillary (RoboCap) platform that grants single-cell CE-MS with automation for proteomes limited to less than ∼100 nL. RoboCap remotely controls precision actuators to translate the sample to the fused silica separation capillary, using vials in this work. The platform is hermetically enclosed and actively pressurized to inject ∼1-250 nL of the sample into a CE separation capillary, with errors below ∼5% relative standard deviation (RSD). The platform and supporting equipment were operated and monitored remotely on a custom-written Virtual Instrument (LabView). Detection performance was validated empirically on ∼5-250 nL portions of the HeLa proteome digest using a trapped ion mobility mass spectrometer (timsTOF PRO). RoboCap improved CE-ESI sample utilization to ∼20% from ∼3% on the manual μCE, the closest reference technology. Proof-of-principle experiments found proteome identification and quantification to robustly return ∼1,800 proteins (∼13% RSD) from ∼20 ng of the HeLa proteome digest on this earlier-generation detector. RoboCap automates CE-MS for limited sample amounts, paving the way to electrophoresis-based high-throughput single-cell proteomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c04353 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660999 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!