Silver Nanowire Aerogel Support Promotes Stable Hydrogen Evolution Reaction at High Current Density.

ACS Appl Mater Interfaces

Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.

Published: October 2024

The stability of electrocatalysts during the hydrogen evolution reaction (HER) is vital for efficient production of hydrogen energy. Herein, we demonstrate that silver nanowire aerogel-based support (AABS) could facilitate the construction of HER catalysts with extraordinary long-term stability. A full nanostructure catalyst of nickel phosphide based formed on AABS (NiP-NiP@AABS) was prepared to achieve an overpotential of 687 mV (without compensation) for HER at the current density of 1 A cm in 0.5 M HSO. Excitingly, the stable HER performance was kept for 42 days during the long-term stability (i-t) test at high current density (0.5-1 A cm). The excellent HER performance of the NiP-NiP@AABS catalyst is attributed to rapid electron transport pathways, numerous more accessible active sites, and support induced enhanced catalytic activity. The support effect was highlighted by a proposed phenomenological two-channel model for electron transport, which provides fresh insights into the design strategy for energy storage and delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c12131DOI Listing

Publication Analysis

Top Keywords

current density
12
silver nanowire
8
hydrogen evolution
8
evolution reaction
8
high current
8
long-term stability
8
electron transport
8
nanowire aerogel
4
support
4
aerogel support
4

Similar Publications

Characteristics of Cognitive Event-Related Potential Components and N170 Source Analysis in Patients with Acute Cerebellar Infarction.

Cerebellum

January 2025

Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.

This study aims to evaluate cognitive impairments in patients with acute cerebellar infarction using event-related potentials (ERP) and electrophysiological source imaging (ESI). Thirty patients with acute cerebellar infarction and 32 healthy volunteers were selected. Cognitive potentials were recorded and measured using a visual Oddball paradigm.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Interdisciplinary Institute for Neuroscience (UMR 5297), University of Bordeaux, Bordeaux, Gironde, France.

Background: PhospholipaseC γ2 (PLCG2) is known to have direct link with genetic risk factors for Alzheimer's like dementia (AD). PLCG2 has been previously demonstrated to have association with Aß uptake through microglia. And mostly expressed in dentate gyrus (DG) network of hippocampus.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neuroscience Institute, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA.

Background: Lateral entorhinal cortex (LEC), medial entorhinal cortex (MEC), and hippocampal area exhibit cell damage due to B-Amyloid depositions, intracellular tau aggregates, and neurofibrillay tangles. AD mouse models allow us to investigate how AD neurodegeneration affects specific brains circuits and resulting behaviors. Specifically, the PS1 and APP NL-G-F knock in (APP-KI) mouse models are relevant due to their genetic modifications, episodic memory impairment, early AD pathophysiology, and novelty designed for study.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

Background: Synaptic loss, a key indicator of cognitive decline in neurodegenerative diseases, lacks a clinical biomarker, but emerging PET-scan tracers targeting synaptic vesicle protein 2A (SV2A) show promise. The current understanding of regional changes in neurodegenerative disorders and the distribution of SV2A in the human brain is quite limited. This knowledge gap presents challenges when assessing the feasibility of using SV2A tracers in therapeutic applications.

View Article and Find Full Text PDF

Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

December 2024

Department of Physics, Stanford University, Stanford, California 94305, USA.

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!