In , apoptosis is inhibited by the BCL-2 homolog CED-9. Although canonically anti-apoptotic, CED-9 has a poorly understood pro-apoptotic function. CED-9 is thought to inhibit apoptosis by binding to and inhibiting the pro-apoptotic APAF-1 homolog CED-4. We show that CED-9 or CED-4 mutations located in their CED-9-CED-4 binding regions reduce apoptosis without affecting the CED-9 anti-apoptotic function. These mutant CED-9 and CED-4 proteins are defective in a CED-9-CED-4 interaction in vitro and in vivo, revealing that the known CED-9-CED-4 interaction is required for the pro-apoptotic but not for the anti-apoptotic function of CED-9. The pro-apoptotic CED-9-CED-4 interaction occurs at mitochondria. In mammals, BCL-2 family members can activate APAF-1 via cytochrome c release from mitochondria. The conserved role of mitochondria in CED-9/BCL-2-dependent CED-4/APAF-1 activation is notable and suggests that understanding how CED-9 promotes apoptosis in could inform the understanding of mammalian apoptosis and how disruptions of apoptosis promote certain human disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.adn0325DOI Listing

Publication Analysis

Top Keywords

ced-9-ced-4 interaction
12
ced-9
9
pro-apoptotic function
8
bcl-2 homolog
8
homolog ced-9
8
apaf-1 homolog
8
homolog ced-4
8
function ced-9
8
ced-9 ced-4
8
anti-apoptotic function
8

Similar Publications

In , apoptosis is inhibited by the BCL-2 homolog CED-9. Although canonically anti-apoptotic, CED-9 has a poorly understood pro-apoptotic function. CED-9 is thought to inhibit apoptosis by binding to and inhibiting the pro-apoptotic APAF-1 homolog CED-4.

View Article and Find Full Text PDF

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in .

View Article and Find Full Text PDF

Many steps in programmed cell death are evolutionarily conserved across different species. The Caenorhabditis elegans proteins CED-9, CED-4 and EGL-1 involved in apoptosis are respectively homologous to anti-apoptotic Bcl-2 proteins, Apaf-1 and the "BH3-only" pro-apototic proteins in mammals. In the linear apoptotic pathway of C.

View Article and Find Full Text PDF

In Caenorhabditis elegans, the central cell-killing process is essentially controlled by the interplay of four apoptotic factors: EGL-1/BH3-only protein, CED-9/Bcl2, CED-4/Apaf1, and CED-3/caspase. In cells destined to die, EGL-1 binds to CED-9 and results in the release of CED-4 from the mitochondrion-tethered CED-9-CED-4 complex to the perinucleus, which facilitates processing of the CED-3 caspase to cause apoptosis. However, whether additional factors exist to regulate the cell-killing process remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!