A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of flood metrics across the Mississippi-Atchafalaya River Basin and their relation to flood damages. | LitMetric

Evaluation of flood metrics across the Mississippi-Atchafalaya River Basin and their relation to flood damages.

PLoS One

Department of Agriculture, Grassland Soil and Water Research Laboratory, Agricultural Research Service, U.S. Temple, Texas, United States of America.

Published: October 2024

Societal risks from flooding are evident at a range of spatial scales and climate change will exacerbate these risks in the future. Assessing flood risks across broad geographical regions is a challenge, and often done using streamflow time-series records or hydrologic models. In this study, we used a national-scale hydrological model to identify, assess, and map 16 different streamflow metrics that could be used to describe flood risks across 34,987 HUC12 subwatersheds within the Mississippi-Atchafalaya River Basin (MARB). A clear spatial difference was observed among two different classes of metrics. Watersheds in the eastern half of the MARB exhibited higher overall flows as characterized by the mean, median, and maximum daily values, whereas western MARB watersheds were associated with flood indicative of high extreme flows such as skewness, standardized streamflow index and top days. Total agricultural and building losses within HUC12 watersheds were related to flood metrics and those focused on higher overall flows were more correlated to expected annual losses (EAL) than extreme value metrics. Results from this study are useful for identifying continental scale patterns of flood risks within the MARB and should be considered a launching point from which to improve the connections between watershed scale risks and the potential use of natural infrastructure practices to reduce these risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463744PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307486PLOS

Publication Analysis

Top Keywords

flood risks
12
flood metrics
8
mississippi-atchafalaya river
8
river basin
8
higher flows
8
risks
7
flood
6
metrics
5
evaluation flood
4
metrics mississippi-atchafalaya
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!